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Abstract
Screening is crucial to preventing the health consequences associated with undiagnosed diseases. 
Electronic health records (EHRs) from primary care can be leveraged with machine learning 
(ML) techniques to create new tools for patient screening in general practice. The aim of this 
narrative review is to discuss the recent literature on the development and validation of predictive 
ML models designed for the early detection of health conditions using readily available patient 
data. The PubMed, Web of Science, Scopus, and IEEE Xplore databases were searched for studies 
published within the last five years. Twenty-one studies were found, covering a variety of health 
conditions. ML-based tools can function as independent screening tests or can enhance existing 
screening methods. Moreover, ML models can be employed to screen for conditions for which 
screening approaches have not yet been developed. However, primary care EHRs alone are not 
always a sufficient source of data for effective screening. Poor data quality can result in erroneous 
or biased predictions. Despite these limitations, the application of ML for screening has shown 
promising results, and further research in this area is warranted. 
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INTRODUCTION 

Screening is a fundamental public health intervention for secondary prevention of dis-
ease. The goal of screening is to identify a condition before symptoms develop so as 
to accelerate the initiation of treatment or supportive care to either cure the condi-
tion or slow its progression (WHO Regional Office for Europe, 2020). Screening can 
be universal (population-level and high-risk-independent), targeted (population-level 
and high-risk-dependent), or opportunistic (patient-level and high-risk-independent) 
(Eriksen et al., 2021).

Primary care provides an excellent setting for administering screening, as it is a reg-
ular point of contact with the healthcare system for the general population, irrespective 
of health status. It is estimated that the primary care enrollment rate in developed coun-
tries exceeds 70% (Lin et al., 2025), with some countries, such as the UK, having nearly 
98% of the population registered in primary care (Nadarajah et al., 2023). Primary care 
encounters generate vast volumes of data that often reflect longitudinal medical history. 
This data, stored in electronic health records (EHRs), could be utilized to uncover sub-
clinical indicators of numerous health conditions, which could then be used to develop 
new digital screening tools.

Currently, machine learning (ML) is one of the leading approaches to analyzing large 
amounts of data. Hence, the aim of this narrative review is to discuss recently published 
research in this field and identify emerging trends in the use of ML to develop screening 
tools for use in primary care.

METHODS 

Search Strategy 

This work is a narrative review of the recent literature describing patient screening 
in primary care using machine learning algorithms. PubMed, Web of Science, Scopus, 
and IEEE Xplore were searched for relevant articles published between January 1, 2020 
and May 28, 2025. The following keywords were used in the search: machine learning, 
screening, and primary care. The inclusion criteria were the use of data readily available 
in primary care offices and the objective of screening, or aiding screening, for a health 
condition. Only studies written in English were considered.
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Information Extraction 

Each article was carefully reviewed to extract key information, including the authors, 
year of publication, data source, screening target, the algorithms evaluated, the best-per-
forming algorithm and its performance metrics, the total number and types of features, 
the validation method, and any non-ML comparators used. 

DISCUSSION 

Summary of Search Results 

A total of 21 studies fulfilled the inclusion criteria. They covered a range of conditions. 
Mental and behavioral disorders were the most frequently investigated (n=6), followed 
by diseases of the circulatory system (n=5), diseases of the digestive system (n=3), and 
endocrine, nutritional, and metabolic diseases (n=3).

Nine distinct algorithm classes were evaluated across all studies. The most prevalent 
model was logistic regression (LR), which was used in 15 studies. Random forest (RF) 
was the second model of choice, appearing in 14 studies. Five studies tested only one 
algorithm. Of the studies that tested more than one, four identified eXtreme Gradient 
Boosting (XGBoost) and three identified neural networks (NN) as the best-perform-
ing models. Other top performers were RF, LR, and Light Gradient Boosting Machine 
(LightGBM).

All studies employed internal validation to assess model performance, but only six 
carried out additional external validation to evaluate the generalizability. Furthermore, 
in five cases, ML performance was compared against standard screening tools.

A complete summary of the most important characteristics and findings of each study 
is presented in Table 1. The performance metrics reported in the table and throughout 
this work are the highest values achieved by the best-performing model on any validation 
set unless otherwise specified.
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Table 1: Summary of Studies on Machine Learning Models for Screening in Primary Care

Authors, 
Year, 

Country
Target Models Vali- 

dation AUC Sensitivity/
Recall Specificity PPV/

Precision NPV Accu- 
racy F1

Kimura et al., 
2025, Japan

PET 
Aβ-positivity EN, LR, SVM I LR 0.76 (0.01) 0.64 (0.03) 0.75 (0.03) 0.62 (0.03) 0.77 (0.01) 0.70 

(0.02) –

Eder et al., 
2025, 

Germany
Depression

XGB, 
XGB+LR, 

SVM
I – 0.878 0.886 – – 0.882a –

Wei et al., 
2024, China

Carotid 
Artery 
Plaques

LightGBM, 
LR, NB, MLP, 

RF, SVM, 
XGB

I 0.854 0.595 0.892 0.729 0.817 0.795 0.655

Lu et al., 
2024, Canada Prediabetes

DNN, KNN, 
LR, NB, RF, 
SVM, XGB

I 0.76 0.60 – 0.69 – 0.72 0.64

Dabbah et al., 
2024, Israel

Advanced 
Liver 

Fibrosis

LR, NN, RF, 
SVM, XGB E 0.91  

[0.88–0.97]
0.91  

[0.84–0.96]
0.76  

[0.72–0.80]
0.31  

[0.26–0.34]
0.99  

[0.98–1.00] – –

Szlejf et al., 
2023, Brazil

Cognitive 
Impairment

CatBoost, 
LightGBM, 

LR, NN, XGB
I 0.873  

[0.839–0.906] 0.316 0.969 0.298 0.972 – 0.307

Qin et al., 
2023, China MASLD DT, RF, SVM, 

XGB I 0.850  
[0.840–0.850] – – 0.795  

[0.781–0.795] –
0.801  

[0.789–
0.801]

0.795  
[0.781–
0.795]

Nadarajah et 
al., 2023, UK AF LR, RF I 0.824  

[0.814–0.834]
0.781  

[0.731–0.829]
0.731  

[0.693–0.771]
0.025  

[0.023–0.027]
0.998  

[0.998–0.998] – –

Onishchenko 
et al., 2022, 

USA
IPF PFSA + 

LightGBM E
Men 0.88 (0.07) 0.68 (0.01)

0.95
0.50 (0.01) 0.98 (0.00) – –

Women 0.94 (0.06) 0.83 (0.02) 0.38 (0.01) 0.99 (0.00) – –

Liu et al., 
2022, China Diabetes

CDKNN, 
KNN, 

LGBM, LR, 
NN, RF, SVM

I 0.697 – – – – – –

Lin et al., 
2022, China

Primary 
Aldostero-

nism
LR E 0.839  

[0.790–0.890] 0.582 0.892 0.716 0.820 0.793 –

Lee and Pak, 
2022, South 

Korea
SI; SpoA LR, RF, SVM, 

XGB I
SI 0.861 0.853 0.869 0.819 0.895 0.863 –

SPoA 0.880 0.861 0.900 0.861 0.900 0.884 –

Sekelj et al., 
2021, UK AF CoxR, LR, 

NN, RF, SVM E 0.87 0.500 0.926 0.169 0.984 – –

Bennis et al., 
2022, 

Netherlands
HF LR, RF, XGB I 0.772  

[0.759–0.785] 0.761 0.653 – – 0.655 –

Yu et al., 
2021, China

Carotid 
Atheroscle-

rosis

DT, MLP, RF, 
SVM, XGB I 0.766  

[0.754–0.769] – – 0.743 – 0.748 0.742

Souza Filho 
et al., 2021, 

Brazil
Depression

AB, CART, 
GB, KNN, 

LR, RF, SVM, 
XGB

I 0.87 (0.08) 0.90 (0.03) – 0.88 (0.04) – 0.89 
(0.03)

0.89 
(0.03)

Malhotra et 
al., 2021, UK

Pancreatic 
Cancer LR, RF I

15–60 y  
(20 mo)b 0.656 0.725 0.587 – – – –

61–99 y  
(17 mo)c 0.609 0.651 0.568 – – – –

Amit et al., 
2021, UK

Postpartum 
Depression XGB E 0.844  

[0.830–0.857]
0.764  

[0.735–0.791] 0.80 – – – –

van Mens et 
al., 2020, 

Netherlands
Suicidality RF I 0.82  

[0.78–0.86]
0.39  

[0.32–0.47]
0.98  

[0.97–0.98]
0.05  

[0.04–0.06] – 0.68a –
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Authors, 
Year, 

Country
Target Models Vali- 

dation AUC Sensitivity/
Recall Specificity PPV/

Precision NPV Accu- 
racy F1

Rosenfeld et 
al., 2020, UK

Barret’s 
Esophagus

DT, LR, NB, 
RF, SVM E 0·81 

[0·74–0·84] 0.90 0.58 0.77 0.77 0.769 0.77

Doyle et al., 
2020, UK

NTM Lung 
Disease XGB I 0.94 0.135 – 0.091 – – –

Notes: Values in parentheses ( ) are standard deviations. Values in square brackets [ ] are 95% confidence intervals. If more than one 
model was tested, the best-performing model is shown in bold. If all are bolded, the performance was similar for all models and 
specific metrics are reported for only one model. 
a Balanced accuracy; b Patients aged 15 to 60 years at 20 months before diagnosis; c Patients aged 61 to 99 years at 17 months befo-
re diagnosis. 

Abbreviations: AUC – area under receiver operating characteristic curve; PPV – positive predictive value; NPV – negative predictive 
value; PET – positron emission tomography; Aβ – amyloid beta; MASLD – metabolic dysfunction-associated steatotic liver disease; 
AF – atrial fibrillation; IPF – idiopathic pulmonary fibrosis; SI – suicidal ideation; SpoA – suicide planning and attempt; HF – heart 
failure; NTM Lung Disease – nontuberculous mycobacterial lung disease; EN – elastic net; LR – logistic regression; SVM – support 
vector machine; XGB – eXtreme Gradient Boosting; LightGBM – Light Gradient Boosting Machine; NB – naïve Bayes; RF – random 
forest; MLP – multilayer perceptron; DNN – deep neural network; KNN – K-nearest neighbors; NN – neural networks; DT – decision 
tree; PFSA – probabilistic finite automata; CDKNN – centroid-displacement-based KNN; CoxR – Cox regression; AB – adaptive boos-
ting; CART – classification and regression tree; GB – gradient boosting; I – internal; E – external.

Defining Machine Learning 

Machine learning (ML) is a subfield of artificial intelligence (AI). Notably, the prolif-
eration of natural language processing (NLP) and large language models (LLMs) has 
popularized the colloquial use of the term AI to refer to conversational chatbots. How-
ever, NLP and ML are distinct in their underlying computational methods and practical 
applications. ML refers to applying predictive algorithms to data to “learn” from existing 
patterns to solve classification or regression problems (Google Cloud, n.d.).

Standard Performance Metrics 

Assessing the real-world utility of predictive ML models relies on being able to interpret 
their performance in a clinical context. The performance of classification models can be 
evaluated with familiar metrics, such as sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV), and accuracy. 

In the field of ML, the four most commonly reported metrics are area under the re-
ceiver operating characteristic curve (AUC or AUROC), precision, recall, and F1 score 
(Google Developers, n.d.). AUC quantifies how well the model discriminates between 
positive and negative cases; it ranges from 0.5, indicating no discrimination, to 1, indi-
cating perfect discrimination. The other three metrics assume values between 0 (worst 
score) and 1 (best score). Recall is equivalent to sensitivity and indicates the proportion 
of positive cases identified. Precision is equivalent to the PPV and indicates the proportion 
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of correct positive predictions. The F1 score combines precision and recall, indicating 
the proportion of false positives and false negatives. 

Unfortunately, there are no universal cut-offs for these metrics that could be used 
to definitively deem a model good or bad for screening, as performance expectations 
are highly use-case-dependent. Higher values are favored. For AUC, values above 0.6, 
0.7, 0.8, and 0.9 correspond to acceptable, good, very good, and excellent performance, 
respectively (Hanna et al., 2023; White et al., 2023).

Model Validation 

Generalizability is the ability of an ML model to make useful predictions on unseen 
data. Validation is crucial in this assessment and can be internal or external (Steyerberg 
et al., 2001). Internal validation involves randomly splitting the dataset into training 
and testing subsets. A simple test-train split, cross-validation, and bootstrapping are 
commonly used internal validation methods (Steyerberg and Harrell, 2016). Internal 
validation is straightforward and should be considered the bare minimum for evaluating 
model performance. External validation uses a separate, fully independent dataset to test 
the model. Strategies for external validation include geographical validation, in which 
the validation data is obtained from different locations (i.e., clinical sites or countries), 
and temporal validation, which uses data from different time periods (Steyerberg and 
Harrell, 2016).

All studies performed internal validation and six conducted external validation. Most 
models showed sustained performance. The model for advanced fibrosis in metabolic 
dysfunction-associated steatosis liver disease (MASLD) (Dabbah et al., 2024), which 
was trained using data from tertiary care, demonstrated comparable performance when 
tested on data from primary care. This finding highlights that models do not necessarily 
need to be trained on primary care data to be useful in those settings. 

Novel Screening Tools

Perhaps the most promising application of ML for the development of screening tools 
is to target diseases for which no known screening methods exist. One such disease is 
idiopathic pulmonary fibrosis (IPF), which is characterized by an insidious onset and 
poor prognosis. A model, the zero-burden comorbidity risk score for IPF (ZCoR-IPF) 
(Onishchenko et al., 2022), was developed to predict the risk of IPF at 1 and 4 years prior 
to a formal clinical diagnosis. Comorbidity codes were used as the sole input. At 1 year, 
the model achieved an AUC of 0.88 (0.07), with moderate sensitivity at 95% specificity 
for men and 0.94 (0.06) for women with high sensitivity at 95% specificity. The NPV 
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was 0.98 (0.00) for men and 0.99 (0.00) for women. These results indicate that ZCoR-IPF 
would be a valuable tool for screening IPF in general practice.

Enhanced Screening Tools

Another application of ML for screening is improving existing screening methods. ML 
models could supplement proven screening strategies with information derived from 
primary care records. The model to screen for depression (Eder et al., 2025) – using 
a combination of 15 deliberately chosen items from the World Health Organization 
Well-Being Index (WHO-5), the Patient Health Questionnaire-9 (PHQ-9), and the World 
Health Organization Disability Assessment Schedule 2.0 (WHODAS 2.0) – achieved 
better results than the PHQ-9 alone. Another model to identify women at risk of post-
partum depression (Amit et al., 2021) based on demographics, medical history, and 
labor complications performed slightly worse on its own than the Edinburgh Postnatal 
Depression Scale (EPDS). However, incorporating the EDPS score into the model im-
proved performance over the individual components.

Fasting plasma glucose (FPG) is one of  the recommended screening modali-
ties for diabetes, but it can miss cases with incidentally normal results at the time 
of screening. To address this issue, a model for screening for diabetes (Liu et al., 
2022) that incorporates demographic and anthropometric features along with an FPG 
measurement was developed. It performed better than the model without FPG, even 
if FPG was below the diagnostic threshold, showing an ability to improve standard 
screening strategies. 

Alternative Screening Tools

In some cases, ML may be utilized to develop predictive models that could serve as an 
alternative to existing screening tools. This could be motivated by the need to deliver 
improved results, reduce reliance on specialized equipment or additional laboratory 
testing, and eliminate the need for invasive testing procedures.

In screening for advanced liver fibrosis in MASLD, the model of Dabbah et al. 
(2024) outperformed established tools such as the Fibrosis-4 Index (FIB-4) and the 
NAFLD Fibrosis Score (NFS), offering a markedly higher PPV while maintaining an 
NPV of 99% [98–100]. The Future Innovations in Novel Detection of Atrial Fibrillation 
model (FIND-AF) (Nadarajah et al., 2023) for identifying patients at risk of atrial fi-
brillation showed better performance than the C2HEST and CHA2DS2-VASc scores. 
The FIND-AF model also identified high-risk patients under 65 years old, whom these 
traditional approaches could otherwise overlook.



Agnieszka Mazurek, MD

24

A model to screen for Alzheimer’s disease (Kimura et al., 2025) by predicting the 
presence of intracerebral amyloid β plaques demonstrated moderate effectiveness at 
excluding individuals unlikely to show amyloid accumulation on positron emission to-
mography (PET), thereby limiting unnecessary scans. Two models for screening carotid 
atherosclerosis (Wei et al., 2024; Yu et al., 2021) showed that they could be used to assess 
atherosclerosis in asymptomatic adults using demographics, physical examination, and 
laboratory data. This is particularly important, given that carotid duplex sonography is 
neither economically feasible nor recommended for this population.

The prediabetes screening model of Lu et al. (2024) was built without incorporating 
any glycemia-related laboratory results, yet still managed good discriminatory perfor-
mance. However, the recall was poor, suggesting limited potential to eliminate the need 
for additional blood tests.

Barrett’s esophagus, a precursor to esophageal adenocarcinoma, is challenging 
to screen for due to its low incidence and the reliance on invasive endoscopy with bi-
opsy. A model based solely on demographic and reflux-related symptoms (Rosenfeld 
et al., 2020) showed that it could be used as a low-burden alternative to identify at-risk 
patients who may require endoscopic evaluation.

Suboptimal Results

It should be acknowledged that primary care data may sometimes be insufficient 
to train ML models that could produce clinically actionable results. A model to identify 
patients at high risk of pancreatic cancer 17 to 20 months prior to diagnosis (Malhotra 
et al., 2021) was trained using data on demographics, comorbidities, symptoms, phar-
macotherapy, and frequency of clinical encounters. Notably, no biomarkers or imaging 
results were included. The model achieved an AUC of 0.656 for patients aged 60 or 
younger at 20 months and 0.609 for patients older than 60 at 17 months before diagnosis. 
Specificity did not exceed 0.59 for either group. The authors proposed that the model 
would likely benefit from integrating biomarker assays to improve usability.

Model Limitations

One of the most frequently addressed limitations of the use of ML models in medicine is 
their explainability. This refers to the extent to which the features that most influenced 
the model’s predictions agree with the medical knowledge explaining the pathophysiol-
ogy of the target condition. Certain algorithms, such as RF, produce feature importance 
rankings that can be evaluated by healthcare professionals for clinical justifiability. 
For the algorithms that do not offer such solutions, the Shapley Additive exPlanations 
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framework (SHAP) (Lundberg & Lee, 2017) can be used to attempt to explain the model’s 
reasoning. Nearly all studies included in this review provided some analysis of feature 
importance, which should mitigate the risk of their models being dismissed by clinicians 
due to a lack of trust. 

Poor-quality primary care EHRs could also affect the reliability of ML-based screening 
tools. The quality of the data found in EHRs is not uniform due to reporting inconsist-
encies between healthcare providers (van Mens et al., 2020). On the one hand, models 
trained on datasets affected by data missingness or inadequate or erroneous reporting 
would likely not achieve satisfactory clinical results. On the other hand, incomplete patient 
records, such as when patients underreport sensitive information regarding addiction, 
education, and income level (Malhotra et al., 2021), could negatively impact the accuracy 
of predictions made by even those models that were trained on high-quality data. 

Ethical Considerations 

Models trained on narrowly defined subpopulations do not represent the general popu-
lation, which may limit their generalizability and affect the health outcomes of minority 
groups. For instance, the model used to screen for cognitive impairment (Szlejf et al., 
2023) was trained on the medical records of Brazilian government workers, who are 
more likely than the general population to have higher education. Consequently, primary 
education, as opposed to higher education, was found to be one of the most important 
predictors of cognitive impairment. This could mean that the model was biased and 
could lead to inaccurate predictions and stigmatization of patients from different social 
classes if implemented in clinical practice.

Future Research Directions

A successful deployment of ML-based screening tools in primary care practice must be 
preceded by a thorough consideration and elimination of various implementation bar-
riers. Clinical trials should be conducted not only for medical validation, but also to test 
the most appropriate approaches to seamlessly incorporate ML-based screening tools into 
the clinical workflow. Particular attention should be paid to designing solutions for the 
complete automation of the ML-based screening process to avoid placing an additional 
burden on physicians and other healthcare workers. Furthermore, surveys should be 
administered to physicians regarding their expectations of model explainability so that 
these expectations can be accounted for at the earliest stages of model development 
to ensure acceptability (Ahluwalia et al., 2025). Additionally, cost-effectiveness should 
be analyzed to justify the use of ML for screening to all stakeholders (Liu et al., 2022). 
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CONCLUSION

In conclusion, this review demonstrated that the use of ML to develop screening tools 
is a budding area of medical research. Primary care EHRs could be leveraged to enable 
screening for conditions that were previously considered medically and economically 
unfeasible to detect at scale. In addition, ML-based screening tools could replace or 
supplement existing screening strategies to improve patient outcomes and optimize re-
source utilization in primary care. The data used for model training should be carefully 
selected to prevent the incorporation of social bias into the predictions and to ensure 
equitable care for all patients. Future research should address potential implementation 
challenges at all stages of model development. 
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