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Abstract: The article compares different versions of individual-based models of single population dynamics with over-
lapping generations with results of the model of population with non-overlapping generations. In all models, various 
versions of global competition for common resources and their unequal partitioning between competing individuals 
are analysed, i.e., when juveniles and adult individuals compete for the same resources, when juveniles and adult indi-
viduals use different resources, and a case called mother’s care. The article analyses the relationship between individual 
variability and population persistence measured by the time of population extinction. Persistence of a population is in-
creased by all forms of competition between individuals not weakened by any environmental factors (e.g. diversification 
of resources of competing individuals) or factors arising from evolutionary history of the species (e.g. mother’s care) and 
related in an appropriate way to the mechanism shaping individual variability in the population. Any form of weakening 
competition leading to decreasing individual variability will adversely affect the persistence of the population. However, 
differences between versions of the model are not very big.

Keywords: individual-based model, non-overlapping generations, overlapping generations, individual variability, per-
sistence, population extinction time

Streszczenie: Różne wersje modelu dynamiki pojedynczej populacji z zachodzącymi pokoleniami zostały porównane 
z modelem z niezachodzącymi pokoleniami. Badano różne wersje globalnej konkurencji o wspólne zasoby i ich nierówne-
go podziału pomiędzy konkurującymi osobnikami: osobniki młodociane i dorosłe konkurują o te same zasoby, osobniki 
młodociane i dorosłe korzystają z różnych zasobów oraz pewną formę opieki matczynej. Analizowano zależność trwałości 
populacji mierzonej czasem, jaki upływa do jej wymarcia, od zmienności osobniczej. Trwałość populacji zwiększana jest 
przez wszystkie postaci konkurencji nie osłabionej przez jakiekolwiek czynniki środowiskowe (np. dywersyfikacja zasobów 
konkurujących osobników) lub wynikłe z ewolucyjnej historii gatunku (np. opieka matczyna) oraz w odpowiedni sposób 
powiązanej z mechanizmem powodującym powstawanie zmienności osobniczej w populacji. Wszystkie formy osłabienia 
konkurencji prowadzące do zmniejszenie zmienności osobniczej mają niekorzystny wpływ na trwałość populacji, chociaż 
różnice między modelami nie są duże.

Słowa kluczowe: model osobniczy, niezachodzące pokolenia, zachodzące pokolenia, zmienność osobnicza, trwałość, 
czas wymarcia populacji
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Introduction
In theoretical ecology, there have long been 
established patterns of building models 
of population dynamics with an age struc-
ture (e. g. Ebenman and Persson 1988, Coul-
son and Godfrey 2007; Logofet and Ulanova 
2017). These are mainly matrix models with 
constant parameters describing changes in 
the density within age classes. Parameters 
representing mortality and reproduction in 
age classes and describing survival at tran-
sitions between age classes are the average 
characteristics of individuals in these classes. 
The result is a description of exponential 
population growth. Of course, it is possible 
to modify this scheme and introduce density 
dependent parameters into the model, but 
it will still be a classic scheme for building 
population dynamics model.

This paper presents various versions 
of individual-based models of population 
dynamics with overlapping generations, 
which use the scheme of describing global 
competition between individuals for com-
mon resources and their unequal partition-
ing between competing individuals, which 
was previously used to describe the dynam-
ics of a single population with non-overlap-
ping generations (Uchmański 2000; Grimm 
and Uchmański 2002). Earlier models served 
analysing the impact of individual variabil-
ity in the amount of resources acquired by 
competing individuals on the persistence 
of the population measured by the time 
of population extinction. Also now, indi-
vidual variability will be the most impor-
tant factor taken into account when analys-
ing models with overlapping generations, 
where the network of interactions between 
individuals is more complex. The results 
of the model with non-overlapping gen-
erations will be compared with the results 
of the model in which individuals of different 
age classes compete for the same resources, 
and later with the results of the model in 
which individuals of different age classes use 
different resources, and with a model that 
can be interpreted as a description of some 
form of mother’s care for offspring.

1. Non-Overlapping Generation

1.1. The Model

The model describes the population dynam-
ics of animals with non-overlapping gen-
erations and the dynamics of resources 
available to them. The individuals repre-
sent a parthenogenetic species. The life-
cycle of individuals starts at the beginning 
of the season. They grow over the season 
and reproduce at the end of the season, 
then they die. Juveniles overwinter and start 
growing at the beginning of the next season. 

The  growth rate of  an  individual is 
assessed as the difference between the rate 
of resource assimilation and the rate with 
which these assimilated resources are used 
for living costs. The rate of resource assimi-
lation A and living costs as measured by 
the rate of respiration R are power functions 
of body weight w (Duncan and Klekowski 
1975):
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costs. The rate of resource assimilation A and living costs as measured by the rate of respiration 

R are power functions of body weight w (Duncan and Klekowski 1975): 

𝐴𝐴 = 𝑎𝑎!𝑤𝑤"! ,																																																																								(1.1) 

𝑅𝑅 = 𝑎𝑎#𝑤𝑤"" ,																																																																								(1.2)   
 

where a1 , a2 , b1  and b2 are parameters. This gives the following equation of individual 

growth (Majkowski and Uchmański 1980): 

𝑑𝑑𝑤𝑤
𝑑𝑑𝑑𝑑 = 𝑎𝑎!𝑤𝑤

"! − 𝑎𝑎#𝑤𝑤"" .																																																													(1.3) 

The rate of consumption depends on the amount of resources available. The parameter a1 for a 

single individual isolated from interactions with other individuals of the same species, as a 

function of the amount of resources V can be described by the equation proposed by Ivlev 

(1961): 

𝑎𝑎! = 𝑎𝑎!,%&'(1 − 𝑒𝑒()*),																																																									(1.4) 

where   a1,max,  is the maximal value of parameter a1  reached when  V = ¥ and s is constant 

parameters describing the rate of reaching this maximal value. 

However, if individuals live together, they may compete for resources. We assume that 

this is a global competition. Each individual competes with all other individuals in the 

population by using common resources. This leads to unequal resource partitioning among 

competitors (Łomnicki 1988). If individuals often compete, then the individual who acquired 

more resources in the past, will also acquire more of them in the future. A good measure of the 

amount of resources acquired by an individual in the past, accounting also for the energy costs 

of resource acquisition, is its actual weight. For this reason, the rate of assimilation of an 

individual in the case of a group of globally competing individuals is described by Eq. (1.4) 

with additionally added dependence on the actual body weight of the individual according to 

the scheme below.   

At each simulation step, individuals with the lowest weight wmin and the highest weight 

wmax are identified. The value of the parameter a1 of resource assimilation by the lightest 

individual is described as 

𝑎𝑎%+, = 𝑎𝑎!,%&'(1 − 𝑒𝑒()#$%*)																																																						(1.5) 

and that of the heaviest individual as 

𝑎𝑎%&' = 𝑎𝑎!,%&'(1 − 𝑒𝑒()#&'*).																																																				(1.6) 

 1.1
 

1.2

where a1 , a2 , b1 a nd b2 are parameters. This 
gives the following equation of individual 
growth (Majkowski and Uchmański 1980):
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1.3

The rate of consumption depends on the 
amount of resources available. The parame-
ter a1 for a single individual isolated from in-
teractions with other individuals of the same 
species, as a function of the amount of re-
sources V can be described by the equation 
proposed by Ivlev (1961):
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  1.4

where a1,max, is the maximal value of param-
eter a1 reached when V = ∞ and s is constant 
parameters describing the rate of reaching 
this maximal value.

However, if individuals live together, 
they may compete for resources . We 
assume that this is a global competition. 
Each individual competes with all other 
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individuals in the  population by using 
common resources. This leads to unequal 
resource partitioning among competitors 
(Łomnicki 1988). If individuals often com-
pete, then the  individual who acquired 
more resources in the past, will also acquire 
more of them in the future. A good meas-
ure of the amount of resources acquired by 
an individual in the past, accounting also for 
the energy costs of resource acquisition, is 
its actual weight. For this reason, the rate 
of assimilation of an individual in the case 
of  a  group of  globally competing indi-
viduals is described by Eq. (1.4) with addi-
tionally added dependence on the actual 
body weight of the individual according 
to the scheme below. 

At each simulation step, individuals 
with the lowest weight wmin and the high-
est weight wmax are identified. The value 
of the parameter a1 of resource assimilation 
by the lightest individual is described as
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 1.5

and that of the heaviest individual as
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with additionally added dependence on the actual body weight of the individual according to 

the scheme below.   

At each simulation step, individuals with the lowest weight wmin and the highest weight 

wmax are identified. The value of the parameter a1 of resource assimilation by the lightest 

individual is described as 
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The parameter a1 for individuals with 
intermediate weights are calculated by using 
interpolation between the values amin for 
wmin and amax for wmax (Fig. 1). The analysis 
of the positively skewed weight distributions 
of growing and at the same time competing 
individuals, shows that to obtain positively 
skewed weight distributions, a linear or con-
vex function should be used for the interpo-
lation (Uchmański 1985; Uchmański 1987; 
Uchmański and Dgebuadze 1990). The linear 
case has been chosen in the present model. 
When the number of individuals in popula-
tion is equal to 1, assimilation was calculated 
in the following way: the value of parameter 
s equaled to half of the sum of smin and smax.

Between the values of constant parameters 
smin and smax of Eqs (1.5) and (1.6), there is 
an inequality
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interpolation between the values amin for wmin and amax for wmax (Fig. 1). The analysis of the 

positively skewed weight distributions of growing and at the same time competing individuals, 

shows that to obtain positively skewed weight distributions, a linear or convex function should 

be used for the interpolation (Uchmański 1985; Uchmański 1987; Uchmański and Dgebuadze 

1990). The linear case has been chosen in the present model. When the number of individuals 

in population is equal to 1, assimilation was calculated in the following way:  the value of 

parameter s equaled to half of the sum of smin and smax. 

 
Figure 1. Non-overlapping generations. Resource partitioning among competing individuals in 
relation to the available amount of resources. The figure shows how the values of parameter a1 
were calculated for individuals that differ in actual body weight. The wmin and wmax represent 
the lowest and the highest body weights in the current population. Sections of straight lines 
represent linear approximations to calculate the value of parameter a1 for individuals with body 
weights wmin  < w < wmax at various amounts of resources V. (1) - amount of resources V = ¥ . 
The values of parameters a1  are the same for all individuals in the population, and equal to the 
maximum value amax. Successive lines (2, 3, 4 and 5) show the values of a1 for decreasing 
amounts of resources V. It can be seen that when V is decreasing, differences between 
individuals in the amount of assimilated resources are increasing. But the decrease in the 
amount of resources V accounts for a much greater decline in assimilation for individuals with 
low body weights than for individuals with large weights.  

Between the values of constant parameters smin and smax of Eqs (1.5) and (1.6), there is 

an inequality 

𝑠𝑠%+, ≤ 𝑠𝑠%&' .																																																																								(1.7)  1.7
When smin = smax, individuals in even-

aged population are equal. Assimilation 

of each individual depends in the same way 
on V. When smin < smax, individuals differ in 
the rate of assimilation. The degree of these 
differences increases with the increasing dif-
ference between smin and smax or decreasing V 
(Fig. 1). However, the differences disappear 
for V = ∞.

The  greatest weight w∞ at successive 
time steps of the simulation and at the end 
of growth w∞

end has a hypothetical individual 
who is growing under conditions V = ∞:
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When smin = smax, individuals in even-aged population are equal. Assimilation of each individual 

depends in the same way on V. When smin < smax, individuals differ in the rate of assimilation. 

The degree of these differences increases with the increasing difference between smin and smax 

or decreasing V (Fig. 1). However, the differences disappear for V ® ¥ . 

The greatest weight w¥ at successive time steps of the simulation and at the end of 

growth w¥
end has a hypothetical individual who is growing under conditions V = ¥: 

𝑑𝑑𝑑𝑑-
𝑑𝑑𝑑𝑑 = 𝑎𝑎!,%&'𝑑𝑑-

"! − 𝑎𝑎#𝑑𝑑-
"" .																																																							(1.8) 

The maximum final weight w¥
end of an individual, asymptotically reached when 

assimilation is equal to respiration, for the growth described by Eq. (1.8) is 

𝑑𝑑-.,/ = 9
𝑎𝑎!,%&'
𝑎𝑎#

:
!

""("! .																																																										(1.9) 

An individual growing under condition when V < ¥, after the end of growth will reach 

the weight wend < w¥
end. The number of juveniles produced by an individual after the end of 

growth is proportional to the difference between its final weight and some threshold weight: 

𝑧𝑧 = =
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑(𝑐𝑐C𝑑𝑑.,/ −𝑑𝑑0&1𝑑𝑑-.,/D		𝑓𝑓𝑟𝑟𝑟𝑟			𝑑𝑑.,/ > 𝑑𝑑0&1𝑑𝑑-.,/

0																						𝑓𝑓𝑟𝑟𝑟𝑟															𝑑𝑑.,/ ≤ 𝑑𝑑0&1𝑑𝑑-.,/
,																	(1.10) 

where c is the parameter describing the intensity of juvenile production, and wfak   (0 < wfak < 1) 

says what part of the maximum end weight w¥
end given by Eq. (1.9) is the threshold weight 

which allows the calculation of juvenile production by an individual. Individuals with body 

weights lower than or equal to the threshold weight die without producing progeny. The 
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where the summation is done over all Nt individuals present in the population at generation t. 

This was combined with the equation describing the resource dynamics:  
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Th e   m a x i mu m  f i n a l  w e i g ht  w ∞
e n d 

of an individual, asymptotically reached 

Figure 1. Non-overlapping generations. Resource 
partitioning among competing individuals in 
relation to the available amount of resources. 
The figure shows how the values of parameter 
a1 were calculated for individuals that differ in 
actual body weight. The wmin and wmax represent 
the lowest and the highest body weights in 
the current population. Sections of straight lines 
represent linear approximations to calculate 
the value of parameter a1 for individuals with 
body weights wmin < w < wmax at various amounts 
of resources V. (1) – amount of resources  
V = ∞ . The values of parameters a1 are the same 
for all individuals in the population, and equal 
to the maximum value amax. Successive lines (2, 3, 
4 and 5) show the values of a1 for decreasing 
amounts of resources V. It can be seen that when 
V is decreasing, differences between individuals 
in the amount of assimilated resources are 
increasing. But the decrease in the amount 
of resources V accounts for a much greater 
decline in assimilation for individuals with low 
body weights than for individuals with large 
weights. 
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when assimilation is equal to respiration, for 
the growth described by Eq. (1.8) is
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weights lower than or equal to the threshold weight die without producing progeny. The 
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where the summation is done over all Nt individuals present in the population at generation t. 

This was combined with the equation describing the resource dynamics:  
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threshold weight:
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where the summation is done over all Nt 
individuals present in the population at gen-
eration t. This was combined with the equa-
tion describing the resource dynamics: 
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where V is the amount of resources, Ai is the resource assimilation by the i-th individual and g 

is the constant amount of resources added at each time step. The summation is the overall 

number of individuals present in the population. The resources not consumed by individuals in 

the population will linearly increase. 

At the initial time instant, the population consisted of N0 individuals, and they had V0 

available resources. Their initial weights are taken from the normal distribution with the 

properties noted above. The basic simulation step was to calculate the number of individuals in 

the population of successive generations. However, within each generation, the equations 

describing the growth of individuals and the resource equation were solved by using the Euler 

method in 80 smaller time steps. This number of smaller steps allowed a good enough fitting 

of the numerical solutions to the analytical solutions of the growth Eq. (1.8) for an individual 

with the maximum weight. The changes in the amount of resources were also calculated in 

smaller time steps. Weight increases at each smaller time step were calculated in the model with 

reference to the actual amount of resources available to individuals. After the end of growth, 

the number of juveniles for each individual was calculated and their initial weights were 

assessed. It was assumed that resources have continuous dynamics. The amount of resources 

available to the next generation was equal to the amount of resources at the end of the previous 

one, calculated with respect to their use and supplementation during that generation. This 

allowed for the same calculations at successive large time steps. The simulation was stopped 

when Nt+1 = 0 or Vt+1 < 0. Standard values of the parameters used in simulations are shown in 

Table 1. 

Table 1. Standard values of the model parameters used in the simulation of population 
dynamics. For smin and smax the maximal range of their values is shown, as the results of 
simulations will be presented for different values of this parameter.  

 Parameter Value 
Growth equation parameters a1,max 0.11 

- a2 0.03 
- b1 0.7 
- b2 0.9 

Parameters of initial weight distribution w0,min 14 
- w0,max 26 
- w0,mean 20 
- w0,variance 5 

Parameters of resource partitioning function smin 0.10x10-6 - 0.55x10-6 
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where V is the amount of resources, Ai is 
the resource assimilation by the i-th individ-
ual and g is the constant amount of resources 
added at each time step. The summation is 
the overall number of individuals present in 
the population. The resources not consumed 
by individuals in the population will linearly 
increase.

At the initial time instant, the popula-
tion consisted of N0 individuals, and they 
had V0 available resources. Their initial 
weights are taken from the normal distri-
bution with the properties noted above. 
The basic simulation step was to calculate 
the number of individuals in the population 
of successive generations. However, within 
each generation, the equations describing 
the growth of individuals and the resource 
equation were solved by using the Euler 
method in 80 smaller time steps. This num-
ber of smaller steps allowed a good enough 
fitting of the numerical solutions to the ana-
lytical solutions of the growth Eq. (1.8) for 
an individual with the maximum weight. 
The changes in the amount of resources 
were also calculated in smaller time steps. 
Weight increases at each smaller time step 
were calculated in the model with reference 
to the actual amount of resources availa-
ble to individuals. After the end of growth, 
the number of juveniles for each individual 
was calculated and their initial weights were 
assessed. It was assumed that resources 
have continuous dynamics. The amount 
of resources available to the next genera-
tion was equal to the amount of resources 
at the end of the previous one, calculated 
with respect to their use and supplemen-
tation during that generation. This allowed 
for the same calculations at successive large 
time steps. The simulation was stopped 
when Nt+1 = 0 or Vt+1 < 0. Standard values 
of the parameters used in simulations are 
shown in Table 1.

1.2. Results

Population dynamics described by the 
model presented in this chapter are char-
acterized by fluctuations in population size 
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where the summation is done over all Nt individuals present in the population at generation t. 

This was combined with the equation describing the resource dynamics:  
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and resources, which sooner or later lead 
to the extinction of the population with 
the minimum number of individuals (Fig 2). 
Fig. 3 shows the mean from 100 simulations 
of extinction times of a single population for 
different ranges of values of the parameters 
smin and smax. Fig. 4 illustrates in more detail 
what the dynamics of population looks like 
for selected areas of values of the param-
eters smin and smax. The highest individual 
variability takes place in the upper left 
corner of  the parameter space smin and 
smax. Here, the population number repeat-
edly goes through phases of increase and 
decrease without extinction on the time 
scale adopted in the simulations (1000 time 
steps). The smallest individual variation 
corresponds to the parameter values from 
the lower right corner of the parameter 
space smin and smax. Here, in turn, the popu-
lation goes extinct most often after the first 
maximum and this happens after only a few 
time steps. 

2.  Overlapping Generations. 
No Competition Between Generations

2.1. The Model

Each individual lives for two seasons. In 
the first season it is a juvenile, in the sec-
ond it is an adult. Let Nt

1 denote the num-
ber of juveniles in the generation t and Nt

2 
the number of adults in the same generation. 
Assimilation and respiration in the juve-
nile and the adult are power functions 
of the individual’s weight (see Eqs (1.1) and 
(1.2)). Assimilation depends on the amount 
of resources available in the environment 
according to the scheme described in Sec-
tion 1.1. Juveniles use a  different pool 
of resources than adults (V1 and V2 respec-
tively). This means that the juvenile com-
petes for resources with other juveniles, 
and the adult with other adults. There is no 
competition between adults and juveniles. 
In this version of the model, the same values 
of smin and smax parameters are used for both 
juveniles and adults. In each small time step, 
individuals with the smallest and largest 
weight in each age class are found separately 
for juveniles and adults. Further, according 

Table 1. Standard values of the model parameters used in the simulation of population dynamics. For 
smin and smax the maximal range of their values is shown, as the results of simulations will be presented 
for different values of this parameter 

Parameter Value
Growth equation parameters a1,max 0.11
- a2 0.03
- b1 0.7
- b2 0.9
Parameters of initial weight distribution w0,min 14
- w0,max 26
- w0,mean 20
- w0,variance 5
Parameters of resource partitioning function smin 0.10x10-6 – 0.55x10-6

- smax 0.60x10-6 – 2.00x10-6

Threshold for reproduction wfak 0.65
Progeny production c 0.01
Initial number N0 10
Initial resources V0 6x106

Increase of resources g 2x106
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Figure 3. Non-overlapping generations. 
Parameter space smin and smax (the values 
on the axes should be multiplied by 
10-7). The average for 100 simulations 
of population extinction times for 
different values of parameters smin and 
smax. Other parameters have standard 
values (Tab. 1). Simulations were run 
for a maximum of 1000 time steps. 
Empty circles – average extinction time 
less than 10 time steps. Grey circles – 
average extinction time greater than or 
equal to 10 time steps and less than 100 
time steps. Half-filled circles – average 
extinction time greater than or equal 
to 100 time steps and less than 1000 time 
steps. Circles fully filled – extinction 
time greater than or equal to 1000 time 
steps

Figure 4. Non-overlapping generations. 
Types of population dynamics 
corresponding to the four different 
areas in the parameter space smin and smax 
from Fig. 3. A – extinction time greater 
than or equal to 1000 time steps – only 
the first 400 time steps are shown (fully 
filled circles). B – average extinction time 
greater than or equal to 100 time steps 
and less than 1000 time steps (half-filled 
circles). C – average extinction time 
greater than or equal to 10 time steps and 
less than 100 time steps (grey circles). 
D – average extinction time less than 
10 time steps (empty circles). The other 
parameters have standard values (Tab. 1)

Figure 2. Non-overlapping generations. 
Example of typical dynamics of the 
population (A) and resources (B) used 
by individuals. Simulation results for 
smin = 1x10-6 and smax = 4x10-6. The other 
parameters had standard values (see 
Table 1)
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to the scheme described above (see Eqs (1.5) 
and (1.6)), the assimilation of each individual 
is determined. For the juvenile, the smallest 
and largest current juvenile weight in this 
small time step and the current resource 
value V1 are used. For adults, the algorithm is 
analogous except that the smallest and larg-
est current adult weight and the current V2 
resource value are used. Juveniles and adults 
can reproduce at the end of each generation 
as shown in Section 1.1 and using the same 
wfak and w∞

end values. After possible repro-
duction, the juvenile progresses to the adult 
category, continues to grow as an adult, 
and at the end of the second season makes 
a second attempt at reproduction. The adult, 
after second attempt at reproduction, dies 
at the end of the second season. Simulations 
were started with the following initial val-
ues: N0

1 = N0, N0
2 = 0, V1 = V0 and V2 = V0. 

Resources V2 and V1 were renewed linearly 

with the same rate g. Standard parameter 
values see Tab. 1.

2.2. Results

Fig.5 shows the parameter space of smin 

and smax. As earlier it illustrates the mean 
of extinction times from 100 simulations 
of a single population dynamics for differ-
ent ranges of values of the parameters smin 

and smax. Now, the condition for popula-
tion extinction is that Nt

1 = 0 and simulta-
neously Nt

2 = 0. The remaining parameters 
had standard values (Tab. 1). Fig. 6 shows 
an example of the dynamics of the number 
of young and adults individuals in the popu-
lation together with the number of offspring 
produced by them in successive time steps.

Figure 5. Overlapping generation. 
No competition between young 
and adult individuals. Parameter 
space smin and smax (the values on 
the axes should be multiplied by 
10-7). Average for 100 simulations 
of population extinction times for 
different values of parameters smin 

and smax. Other parameters have 
standard values (Tab. 1). Simulations 
were run for a maximum of 1000 
time steps. Empty circles – average 
extinction time less than 10 time 
steps. Grey circles – average 
extinction time greater than or 
equal to 10 time steps and less than 
100 time steps. Half-filled circles – 
average extinction time greater than 
or equal to 100 time steps and less 
than 1000 time steps. Circles fully 
filled – extinction time greater than 
or equal to 1000 time steps 



92Janusz Uchmański

3.  Overlapping Generations. Competition 
Between Generations

3.1. The Model

The only difference from the model with-
out competition between generations, when 
adults and juveniles used different resources, 
is that now, when the competition between 
generations takes place, adults and juveniles 
use the same resources. Therefore, it is nec-
essary to re-formulate the rule governing 
the partitioning of resources between com-
peting individuals. In each small time step, 
the assimilation of competing individuals 
will be determined according to the rules 
described by Eqs (1.5) and (1.6) with the fol-
lowing modifications. A group of juveniles 
will be characterized by weights that will 
usually be lower than those of adults. How-
ever, it cannot be ruled out that the ranges 
of weight values in both age groups will 
overlap. We assume that the partitioning 
of resources as a result of competition is 
determined by interactions between adults. 
The presence of juveniles does not affect 
directly the assimilation of adults. There-
fore, the assimilation of adults is deter-
mined as in the model without competition 
between generations. In each small time 
step, the smallest and largest adult weights 
are found, and the assimilation of adults 
with intermediate weights is calculated 

according to Eqs (1.5) and (1.6). Adults, 
on the  other hand, have an  impact on 
the assimilation of juveniles. Their assimila-
tion is calculated by extending the straight 
line to calculate the assimilation of adults 
to  the  left in the  direction of  juvenile 
weights. When calculating the assimilation 
of juveniles, the segment of this line between 
the points marked by the smallest and larg-
est juvenile weight is used (Fig.7). In addi-
tion, the parameter b was introduced, which 
determines the strength of competition 
exerted on juveniles by adults. If b = 1, then 
the section determining the assimilation 
of juveniles lies on the extension of the line 
on which there is also a section used to cal-
culate the assimilation of adults. If b < 1, 
then the segment determining the assimila-
tion of juveniles is shifted downwards in par-
allel, proportionally to the value of param-
eter b (Fig. 7).

The scheme above describes how resources 
are partitioned when Nt1 ¹ 0 and Nt2 > 1. 
When Nt1 > 1 and Nt2 = 0 (this is the case, for 
example, in the beginning of the first gen-
eration) or when Nt1 > 1 and Nt2 = 1, then 
the assimilation of juveniles was calculated 
according to the same scheme as the one 
presented in the version of the model with 
non-overlapping generations: in the group 
of juveniles, the smallest and largest weight 
of an individual was searched. These values 

Figure 6. Overlapping generation. 
No competition between young and 
adult individuals. Example of typical 
dynamics of the number of young 
(A) and adult (B) individuals in 
the population. Open circles – 
number of offspring produced 
by all individuals in each age 
category. Simulation results for smin 

= 1x10-6 and smax. = 4x10-6. The other 
parameters had standard values (see 
Table 1)
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made it possible to determine the largest 
and smallest assimilation with fixed values 
of smin and smax parameters, and the assimila-
tion of individuals with intermediate weights 
was determined on the basis of linear inter-
polation between these two points. When 
Nt

2 = 1, adult assimilation was calculated in 
the same way as in the previously presented 
models: the value of parameter s equaled 
half the sum of smin and smax. Later the pro-
cedure was followed as previously described.

3.2. Results

Parameter spaces of smin and smax for b = 1.0 
and for b = 0.75 are shown in Fig. 8 and Fig. 
10 respectively. They illustrate the mean 
extinction times from 100 simulations 
of a single population dynamics for different 
ranges of values of the parameters smin and 
smax. Fig. 9 for b = 1.0 and Fig. 11 for b = 0.75 
show examples of the dynamics of the num-
ber of  young and adults individuals in 
the population together with the number 

of offspring produced by them in successive 
generations.

4. Overlapping Generations. Mother’s Care

4.1. The model

As before, individuals live for two sea-
sons. A juvenile grows in the first season. 
At the end of  the  first season, it repro-
duces. It also grows as an adult individual 
in season two but does not reproduce at 
the end of season two. The second sea-
son is devoted to caring for the offspring it 
produced at the end of the first season. All 
these activities are related to the assimila-
tion of resources from the environment, for 
which the adult individual must compete 
with other individuals. Competition takes 
place only between adults. The partition-
ing of resources between adult competitors 
is described by the procedure known from 
the version of the model with non-overlap-
ping generations. The weight of the light-
est and heaviest adult individual in each 

Figure 7. Overlapping generations. Competition between generations. Resource partitioning 
among competing individuals in relation to the available amount of resources. The figure shows 
how the values of parameter a1 were calculated for individuals that differ in actual body weight in 
the category of young and adult individuals. The wmin and wmax represent the lowest and the highest 
body weights of adult individuals in the current population. These weights are used for calculation 
of resource partitioning between individuals according to Egs (1.5) and (1.6). Solid sections of straight 
lines represent linear approximations to calculate the value of parameter a1 for: right part – adult 
individuals with body weights wmin < w < wmax, left part – young individuals for b = 1.0. The range 
covered by weight of young individuals is indicated on the x-axis, but these weights have no influence 
on assimilation of other individuals. Upper horizontal line shows equal resource partitioning for V = 
∞ . Two lower lines show unequal resource partitioning for two decreasing values of V. Dotted lines in 
the left part of the figure indicate resource partitioning among young individuals for b < 1
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Figure 8. Overlapping generation. Competition 
between young and adult individuals. 
Parameter space smin and smax (the values on 
the axes should be multiplied by 10-7). β = 1.0. 
Average for 100 simulations of population 
extinction times for different values 
of parameters smin and smax. Other parameters 
have standard values (Tab. 1). Simulations were 
run for a maximum of 1000 time steps. Empty 
circles – average extinction time less than 10 
time steps. Grey circles – average extinction 
time greater than or equal to 10 time steps and 
less than 100 time steps. Half-filled circles – 
average extinction time greater than or equal 
to 100 time steps and less than 1000 time steps. 
Circles fully filled – extinction time greater 
than or equal to 1000 time steps. The other 
parameters had standard values (see Table 1)

Figure 9. Overlapping generations. 
Competition between generations. 
Filled circles – example of typical 
dynamics of the number of young 
(A) and adult (B) individuals in 
the population for β = 1.0. Open 
circles – number of offspring 
produced by all individuals in each 
age category. Simulation results 
for smin = 1x10-6 and smax. = 4x10-6. 
The other parameters had standard 
values (see Table 1)

Figure 10. Overlapping generation. Competition 
between young and adult individuals. Parameter 
space smin and smax for β = 0.75 (the values on 
the axes should be multiplied by 10-7). Average 
for 100 simulations of population extinction 
times for different values of parameters smin and 
smax. Other parameters have standard values 
(Tab. 1). Simulations were run for a maximum 
of 1000 time steps. Empty circles – average 
extinction time less than 10 time steps. Grey 
circles – average extinction time greater than 
or equal to 10 time steps and less than 100 time 
steps. Half-filled circles – average extinction 
time greater than or equal to 100 time steps and 
less than 1000 time steps. Circles fully filled – 
extinction time greater than or equal to 1000 
time steps 
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small time step is determined. This allows 
the assimilation of the lightest and heavi-
est individual among adults to be calculated. 
The assimilation of adult with intermediate 
weight was calculated by linearly interpo-
lating between these two values. Juveniles 
do not compete with other individuals. 
The mother’s care for these individuals is 
expressed in the fact that the parameter 
a1 in growth equations of her offspring is 
the same as its current value for the mother. 
If it so happened that the mother was miss-
ing, then a1 in the growth equations of her 
offspring would be equal to 0. However, in 
the simulations whose results are shown in 
this paper the mortality of individuals was 
not observed.

Due to the assumption presented above, 
which says that a juvenile in the first sea-
son of life, whose mother is missing, has 
assimilation equal to zero, the initial con-
ditions for the simulation of this model 
must be changed. They are as follows in 
this version of the model: N0

1 = 0, N0
2 = N0,  

V = V0. At the beginning of the first genera-
tion of the simulation, the weights of adults 
are selected from a normal distribution 
with a mean wfak w∞

end and variance equal 
to 100. These weights are used to calculate 
the number of offspring and their initial 
weights for each adult according to the pre-
viously described procedures. The offspring 
of all adults are included in the category 

of  juveniles and then the simulation in 
the first and subsequent large time steps 
proceeded as described above.

4.2. Results

Fig.12 shows the parameter space of smin 

and smax. As earlier it illustrates the mean 
of extinction times from 100 simulations 
of a single population dynamics for differ-
ent ranges of values of the parameters smin 

and smax. 

5. Discussion
The analysis of the dynamics of the popu-
lations whose models are discussed in this 
paper will be conducted at the level of dis-
tributions of different types of dynamics 
in the parameter space smax and smin. Due 
to the fact that the most characteristic event 
for the populations described by the models 
discussed in this paper is population extinc-
tion, this will be an analysis of the impact 
of  the model assumptions on the  time 
of population extinction.

In the model with non-overlapping gen-
erations, the relationship between individ-
ual variability and population persistence 
is relatively simple. Population dynamics 
is characterized by oscillations in num-
ber accompanied by corresponding oscil-
lations in the amount of resources. When 
initially the population number is small and 
resources are sufficient, all individuals are 

Figure 11. Overlapping generations. 
Competition between generations. 
Filled circles – example of typical 
dynamics of the number of young 
(A) and adult (B) individuals in 
the population for β = 0.75 Open 
circles – number of offspring 
produced by all individuals in each 
age category. Simulation results 
for smin = 1x10-6 and smax. = 4x10-6. 
The other parameters had standard 
values (see Table 1)
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able to produce more than one offspring. 
The population is increasing. However, 
the increase in the number of individuals 
in the population causes systematic deple-
tion of resources. This limits the number 
of offspring produced in each generation. In 
each generation, individuals in a population 
compete globally for resources, which are 
unequally partitioned between competing 
individuals. These variability between indi-
viduals increases as the amount of resources 
in the environment decreases. Thus, deple-
tion of resources as population increases will 
not only reduce production of offspring by 
competing individuals, but also results in 
that not all individuals will be able to repro-
duce. As a consequence, as resources are 
depleted, population increases will become 
smaller, and after reaching a maximum, 
the population will begin to decline. In 
the minimum number, individual variabil-
ity becomes a very important factor allow-
ing the population to survive the crisis 
associated with the scarcity of resources in 
the environment. If individual variability 
is large enough, there is a high probability 

that there will be at least one individual in 
the population capable of reproducing in 
these conditions. At the same time small 
number of individuals causes little exploita-
tion of resources, which results in their slow 
increase. As a result, the population starts 
growing again and the cycle repeats itself. 
However, if the minimum number popula-
tion does not contain at least one individual 
capable of reproduction, and this can hap-
pen more easily when individual variability 
is low, the population goes extinct. If indi-
vidual variability is very low, this can hap-
pen even after the first population maxi-
mum. When individual variability is greater, 
the population goes through many cycles 
of growth and decline. However, sooner 
or later, at one of the minima, it turns out 
that there is no individual capable of repro-
duction and the population goes extinct. 
The  time of extinction of a population 
depends on individual variability: the greater 
it is, the greater the  time of extinction 
of the population.

What is important for longer popula-
tion extinction time is not only the degree 

Figure 12. Overlapping generation. Mother’s care. Parameter space smin and smax . Average for 100 
simulations of population extinction times for different values of parameters smin and smax (the values 
on the axes should be multiplied by 10-7). Other parameters have standard values (Tab. 1). Simulations 
were run for a maximum of 1000 time steps. Empty circles – average extinction time less than 10 
time steps. Grey circles – average extinction time greater than or equal to 10 time steps and less than 
100 time steps. Half-filled circles – average extinction time greater than or equal to 100 time steps 
and less than 1000 time steps. Circles fully filled – extinction time greater than or equal to 1000 time 
steps
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of  individual variability measured by 
the difference between smax and smin , but 
also the values of smax and smin. In the case 
of the values of the parameters smax and 
smin coming from the upper left corner 
of the parameter space, we will have indi-
viduals with the largest possible variability 
of assimilation. At the same time, there will 
be individuals with the highest and lowest 
assimilation in the population. In the lower 
right corner, we will have the population 
with the least variability in assimilation, but 
this will be achieved by the greatest possi-
ble reduction in the assimilation of individ-
uals with the greatest assimilation. In turn, 
in the other two corners of the parameter 
space, there will be cases where the popu-
lation is less variable in terms of assimila-
tion than in the case of the upper left corner, 
although more than in the case of the lower 
right corner. In the upper right corner, there 
will be a population with individuals with 
high assimilations, while in the lower left 
corner the population of individuals with 
the smallest assimilations. 

The fact that the cases with the largest 
population extinction times are concen-
trated in the upper left corner of the param-
eter space proves that for a long population 
extinction time, the presence of the entire 
spectrum of individuals with the largest 
and smallest assimilation in the population 
is needed. In the phase of resource decline, 
the latter will die childless. It is for this rea-
son that the population will decrease, but at 
the same time it will weaken the exploita-
tion of resources. Individuals from the first 
category, in turn, have a chance to produce 
offspring even with a minimum of resources, 
which will allow the population to enter 
the next phase of increase. 

It is also important that the  scheme 
of  resource partitioning between com-
peting individuals described in this paper, 
which is justified by positively skewed 
distributions of  individual weights in 
even-aged populations (Uchmański 1985), 
causes that the number of individuals with 
the highest assimilation is small compared 

to the number of individuals with the low-
est assimilation. It is on these few indi-
viduals with the greatest assimilation that 
the mechanism ensuring the persistence 
of  the population is based. Cases with 
the greatest population extinction times do 
not cluster around the upper right corner 
of the parameter space, where we will find 
populations with individuals with the great-
est assimilation. Here, even individuals with 
the smallest assimilations are characterized 
by the highest possible smin value. However, 
due to the relatively low variability and pre-
dominance of individuals with high assimi-
lation in the population, which results in 
heavy resource exploitation, the population 
extinction time is shorter. This would be 
even more evident if we extended the range 
of smin values towards larger values. We 
would see the same effect if we extended 
the range of smax values to even smaller val-
ues in the lower left corner of the parameter 
space. Here, one could observe the extinc-
tion of the population eve in the first step 
of the simulation.

Some of the previous arguments explain-
ing population dynamics with non-overlap-
ping generations can also be applied to pop-
ulations with overlapping generations, but 
the interactions between young and old indi-
viduals introduce new elements to the analy-
sis. In general, a glance at the distribution 
of different types of dynamics in the param-
eter space smax and smin for different versions 
of the model with overlapping generations 
shows that they are not very different from 
the model with non-overlapping genera-
tions, although of course there are clear dif-
ferences in the distribution of different types 
of dynamics. In each case, however, the pop-
ulation persistence gradient is preserved in 
the direction connecting the lower right and 
upper left corners of the parameter space. 
This means that in all versions of the model, 
an  increase in individual variability in 
the amounts of resources obtained leads 
to an increase in the persistence of the pop-
ulation measured by the length of time that 
elapses until the extinction of the population.
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The parameters space smax and smin in 
the case of  the model with overlapping 
generations and with young and old indi-
viduals using the same resources, i.e. with 
global competition between all individuals 
of the population for common resources, 
also between young and old individuals, 
indicates a clear increase in the area occu-
pied by cases characterized by long extinc-
tion times compared to the model with 
non-overlapping generations. This applies 
to the situation b = 1.0, when assimilation 
of juveniles in the presence of adults is not 
additionally reduced. The reason for this 
is as follows. In the case of the model with 
non-overlapping generations, the condition 
for population extinction is the absence in 
a certain generation of at least one indi-
vidual capable of producing at least one off-
spring with current resources. In the case 
of a model with overlapping generations, 
three conditions must be met. Consider 
two generations: current and previous. If 
a population is to become extinct in the cur-
rent generation, then, first, there must be 
no reproducing adults in that generation. 
Secondly, there cannot be any reproducing 
adult in the previous generation, and thirdly, 
there cannot be any reproducing juvenile 
in the previous generation. As can be seen 
from the simulation results, in the case 
of a population with overlapping genera-
tions, these three conditions are more dif-
ficult to meet simultaneously than one 
condition in the case of a population with 
non-overlapping generations. This is despite 
the fact that joint exploitation of the same 
resources by juveniles and adults may mean 
much more intensive depletion of them.

On the other hand, if it so happens that 
the  current generation does not have 
a reproducing adult, then the population 
can survive in effect of the reproduction 
of the juveniles or adults of the previous 
generation. If there is no reproducing adult 
in the previous generation, the population 
can survive by reproducing juveniles in 
the previous generation or by transform-
ing juveniles from the previous generation 

into adults in the current generation. If, on 
the other hand, there is no reproducing juve-
nile in the previous generation, then the pop-
ulation can survive by reproducing adults 
in the previous generation or, as before, by 
transforming juveniles from the previous 
generation into adults in the current gen-
eration. If there are no reproducing juve-
niles and adults in the previous generation, 
the population can survive by transforming 
the juveniles of the previous generation into 
adults of the current generation. If there are 
no reproducing adults in the current and 
previous generations, the population can 
survive by reproducing juveniles in the pre-
vious generation. Finally, if there are no 
reproducing adults in the current generation 
and no reproducing juveniles in the previous 
generation, then the population can survive 
by reproducing the previous generation’s 
adults. All these conditions for population 
persistence will be weakened if the transfor-
mation of juveniles of the previous genera-
tion into adults of the current generation is 
not 100% efficient. Thus, it can be assumed 
that all ecological mechanisms that weaken 
this transformation, for example, increased 
juvenile-to-adult mortality, can significantly 
shorten the time of population extinction.

Increasing competitive pressure on juve-
niles from adults by reducing the value 
of parameter b has a negative impact on 
the persistence of the population. The area 
filled with cases with the longest population 
extinction times shrinks significantly for b 
< 1. A proportional reduction in assimila-
tion of all juveniles weakens their growth 
and, consequently, also adversely affects 
the growth of adult individuals, reduc-
ing the production of offspring in both age 
groups. This is clearly seen in the fact that 
for b < 1, juveniles do not produce offspring 
after the end of growth, which means that 
they have not reached the appropriate 
weight. Production of offspring takes place 
only in adults.

The paper analyses two versions of the 
model with overlapping generation, in which 
competition between adults and juveniles is 
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deliberately eliminated or its effects reduced: 
a model with different resources used by 
juveniles and adults, and a model with 
the so-called mother’s care. In both cases, 
the negative impact of these assumptions 
on population persistence was observed. In 
the parameter spaces smax and smin, the areas 
occupied by the longest population extinc-
tion times have shrunk significantly. The rea-
son for this is the reduction of individual var-
iability in the amount of resources acquired 
by individuals. However, in each of these 
models it happens differently. Separation 
of juvenile and adult resources eliminates 
competition between juveniles and adults. 
This does not significantly affect the adults, 
because in the case of shared resources, 
the presence of juveniles does not affect 
the distribution of resources between adults, 
it only reduces the amount of resources in 
the environment. However, it has a big 
impact on young individuals. Releasing 
from the competitive influence of adults 
by beneficially changing the way resources 
are partitioned and increasing the pool 
of resources available to juveniles causes 
them to grow better. This is manifested, for 
example, by the fact that after this stage 
of growth they produce offspring, which 
happens rarely or never in the case of juve-
niles using the same resources as adults. 
The increase in the number of offspring 
has a negative impact on the persistence 
of the population. In the case of a model 
with non-overlapping generations, increas-
ing the value of the parameter c leads, espe-
cially for medium and low individual vari-
ability, to a decrease in the extinction time 
of the population (see analysis presented in 
Uchmański 2000; Grimm and Uchmański 
2002). This is due to the increased exploita-
tion of resources by more individuals. Sepa-
rating juvenile and adult resources primar-
ily means reduction in the variability within 
the category of juveniles, which in the next 
step of the simulation leads to reduced vari-
ability of adults. And this, as we already 
know, lowers the  chance of  a  popula-
tion surviving the crisis that occurs when 

resources are at a minimum. In the case 
of the model with the so-called mother’s 
care, assigning the same value of parameter 
a1 to juveniles as their mother causes that 
variability among juveniles is not the result 
of the conditions in which they live, but it 
repeats the variability of adults. It can also 
be treated as a decrease in individual vari-
ability in the population, and in a way that is 
unfavourable for the persistence of the pop-
ulation, because it breaks the relationship 
between the variability of individuals and 
their living conditions.

Conclusions
Individual natural selection promotes such 
characteristics of  an  individual, called 
adaptations, that increase its reproduc-
tive success. It is the direct and immedi-
ate reproductive success of  an  individ-
ual – the number of offspring produced by 
it that survive to adulthood (Cooper 1984; 
Stearns and Hoekstra 2005). This is a pattern 
of thinking that holds true in evolutionary 
biology. From this perspective, mother’s care, 
or the separation of resources of juveniles 
and adults, appears to promote the repro-
ductive success of an individual. If, in some 
situation, such adaptations become fixed in 
the population, the models discussed in this 
paper show that this has an adverse effect on 
the persistence of the population. This can 
be regarded as the ecological costs of these 
adaptations, which are inevitable. Persis-
tence of the population will be supported by 
all forms of competition between individuals 
not weakened by any environmental factors 
(e.g. diversification of resources of compet-
ing individuals) or factors arising from evo-
lutionary history of the species (e.g. moth-
er’s care) and related in an appropriate way 
to the mechanism shaping individual vari-
ability in the population. Any form of weak-
ening competition leading to  decreas-
ing individual variability will adversely 
affect the persistence of the population. At 
the same time, one must realize that such 
a way of regulating the population, in which 
individual variability is involved, entails 
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a demographic cost, which is not visible 
when looking at the number of living indi-
viduals in the population. In the models con-
sidered in this paper, mortality resulting for 
instance from poor growth of an individual 
was equal to zero (other causes of mortality 
were also not taken into account), so only 
childless death of individuals can be written 
down on the cost side.
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