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Abstract

Establishing measurement invariance for indicators measured using online and offline 
modes of data collection is a precondition for the comparison of such data. Furthermore, 
it may allow accumulating knowledge using data from different sources or pooling 
data collected using different methods. The main goal of the current paper is to present 
a tutorial outlining the procedure of testing for measurement invariance using the 
Amos and Mplus software packages. We focus on the following steps for performing 
a measurement invariance test: 1) model specification, 2) model identification, 3) model 
estimation and evaluation, and 4) model modification. 
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TESTOWANIE RÓWNOWAŻNOŚCI POMIARU KWESTIONARIUSZY 
W WERSJACH ONLINE I OFFLINE: ZASTOSOWANIE PAKIETÓW 

OPROGRAMOWANIA AMOS I MPLUS

Streszczenie

Równoważność pomiaru konstruktów mierzonych online i offline jest warunkiem po-
równywalności zebranych danych. Umożliwia akumulację wiedzy uzyskanej na podsta-
wie badań przeprowadzonych tymi dwiema różnymi metodami oraz łączenie danych 
zebranych tymi sposobami do dalszych analiz. Głównym celem artykułu jest prezentacja 
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procedury testowania równoważności pomiaru w programach Amos i Mplus. Procedurę 
prezentujemy w kolejnych krokach testu równoważności: 1) specyfikacja modelu, 2) 
identyfikacja modelu, 3) estymacja i ocena modelu i 4) modyfikacja modelu.

Słowa kluczowe: równoważność pomiaru, Amos, Mplus

When is measurement invariance needed?

Similar data or measurements are often gathered under different conditions, 
among different groups, or using different modes of data collection such as online 
and offline. Researchers may be interested in pooling or comparing such data even 
though they may have been collected using different methods. For instance, if data 
may be cheaply produced using online methods of data collection, researchers 
would like to know if the measurement quality of such data is comparable to that 
of data collected using other modes of data collection. Scholars may also be inte-
rested in knowing if such data are compatible to be pooled together with similar 
data collected using offline modes of data collection. Thus, in these situations it 
is necessary to guarantee that the data are comparable and that pooling the data 
does not mix up constructs which are differently understood by respondents, that 
respondents do not behave differently while responding to the different question-
naires, or that constructs do not possess different measurement properties. Testing 
for measurement invariance in these situations allows researchers to establish 
whether data are comparable rather than to simply assume this.

What is measurement invariance?

Measurement invariance is a property of an instrument (usually a questionnaire) 
intended to measure a given psychological construct. Measurement invariance 
affirms that a questionnaire does indeed measure the same construct in the same 
way across various modes of data collection, but also across different groups, 
at various time points or under different conditions (Chen, 2008; Marsh et al., 
2010; Meredith, 1993; Millsap, 2011; Steenkamp & Baumgartner, 1998; Van de 
Vijver & Poortinga, 1997; Vandenberg, 2002; Vandenberg & Lance, 2000).

One can differentiate between several levels of measurement invariance. Each 
level is defined by the parameters constrained to be equal across samples. The 
first and lowest level of measurement invariance is called configural invariance 
(Horn & McArdle, 1992; Meredith, 1993; Vandenberg & Lance, 2000). Configural 
invariance requires that each construct is measured by the same items. This 
level of invariance does not guarantee that the measurement properties are the 
same and, therefore, higher levels of invariance are necessary before meaningful 
comparisons can be made. 

The second level is called metric invariance (Horn & McArdle, 1992; Steenkamp 
& Baumgartner, 1998; Vandenberg & Lance, 2000). Metric invariance is tested by 
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constraining the factor loadings between the observed items and the latent variable 
to be equal across the compared groups (Vandenberg & Lance, 2000). If metric 
invariance is established, one may assume that people in the different samples 
interpret the items in the same way, although it is still uncertain if the construct is 
measured in the same way. If metric invariance is established, covariances or un-
standardized regression coefficients may be meaningfully compared across samples.

A third and higher level of measurement invariance is called scalar invariance 
(Vandenberg & Lance, 2000). Scalar invariance is tested by constraining not only 
the factor loadings but also the indicator intercepts to be equal across groups 
(Vandenberg & Lance, 2000). If scalar invariance is established, one may assume 
that respondents use the scale in the same way in each group; thus, it implies 
that the same construct (metric invariance) is measured in the same way (scalar 
invariance). If scalar invariance is established, one may compare also latent or 
observed means across samples, and pooling data from the different samples 
may be conducted more confidently.

Partial invariance is supported when the parameters of at least two indica-
tors per construct (i.e., loadings for partial metric invariance and loadings plus 
intercepts for partial scalar invariance) are equal across groups. According to 
Byrne, Shavelson, and Muthén (1989) and Steenkamp and Baumgartner (1998), 
partial invariance is sufficient for meaningful cross-group comparisons.

Testing for measurement invariance using the Amos and Mplus 
software packages

There are several procedures for conducting tests of measurement invariance and 
many software packages which can do it (for a review see Davidov, Schmidt, & 
Billiet, 2011; Millsap, 2011). The most widely used method is multigroup confirma-
tory factor analysis (MGCFA; Bollen, 1989; Jöreskog, 1971). This method involves 
setting cross-group constraints on parameters and comparing more restricted 
models with less restricted models (Byrne et al., 1989; Meredith, 1993; Steenkamp & 
Baumgartner, 1998; Vandenberg & Lance, 2000). Two popular structural equation 
modeling (SEM) software packages which are frequently used to test for measure-
ment invariance are Amos (Arbuckle, 2012) and Mplus (Muthén & Muthén, 2012).

In both Amos and Mplus it is possible to write syntax and to draw the model 
using a graphical input. Drawing models in Mplus is a relatively new feature 
that was introduced in its 7th version (Muthén & Muthén, 2012), whereas this 
has been the main feature of Amos since its inception. However, Mplus inclu-
des many advanced features relevant for measurement invariance testing (e.g., 
handling of categorical data or new optimization procedures) which are missing 
in Amos. Below we demonstrate how such an analysis is run in both of these 
software packages using the path diagram in Amos and the syntax in Mplus. 
For further reading we refer to the manuals of both software packages.
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Empirical testing of measurement invariance across various samples may be 
conducted using a structural equation modeling (SEM) approach in four steps of 
analysis: 1) model specification, 2) model identification, 3) model estimation and 
evaluation, and if necessary 4) model modification and looking for partial measure-
ment invariance. These steps will be described below, and guidance on performing 
these steps in Amos 21 and Mplus 7.1 will be provided (see, e.g., also Byrne, 2004). 

Model specification

Specification of the confirmatory factor analysis (CFA) model implies determi-
ning which items measure which constructs and how the constructs relate to 
each other. It is recommended that the specification of CFA in the multigroup 
analysis is preceded by a CFA in each group separately (Byrne, 2010).

Model specification in Amos
The specification in Amos requires drawing a path diagram. In the path diagram 
rectangles represent observed variables (items), while the ellipses represent latent 
variables or measurement errors (which like the latent variables are also unob-
served). A model for three latent variables each loading on three items (with 
nine items in total) is presented in Figure 1. 

Figure 1. Specification of a CFA model in Amos.

The model consists of three latent variables: Lat1 (loading on item1, item2, and 
item3), Lat2 (loading on item4, item5, and item6) and Lat3 (loading on item7, 
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item8, and item9). Nine measurement errors are represented by ellipses which 
load on their respective items. For example, e1 is the measurement error of item1. 
Thus, the observed scores of item1 depend on two unobserved components: the 
latent variable of interest (Lat1) and the measurement error (e1).

The specified model must be the same for the two online and offline samples. 
Therefore, in the box Groups, the online group and offline group should be in-
troduced and the data should be imported for each group, respectively (using 
the menu option File à Data files), as illustrated in Figure 2.

Figure 2. Importing data for groups in Amos.

After defining the groups, one may use the menu to conduct the invariance 
test (Analyze à Multi-Group Analysis), as presented in Figure 3.

Figure 3. Multigroup analysis in Amos.
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This option produces several models with increasingly strict equality con-
straints across groups. In the configural model there are no constraints. This 
model is labeled by Amos unconstrained. In the metric invariance model, the 
software constrains all factor loadings to be equal across the groups. This mo-
del is labeled by Amos measurement weights. In the scalar invariance model 
the software additionally constrains the intercepts to be equal across groups. 
This third model is labeled by the program measurement intercepts. Each set of 
constraints refers to a separate model. Model fit coefficients for these models 
are listed in the output. The program produces a few additional models with 
additional equality constraints on the measurement errors or on structural 
parameters such as covariances or latent means, which we do not discuss here.

Model specification in Mplus
Table 1 presents the syntax in Mplus of the model presented in Figure 1.

Table 1 
Mplus Syntax and Explanations of Commands Used in Testing for Measurement 
Invariance

Syntax Explanations
data: 
file is aaaa.dat; 

Indicates the data source (the name of the file is 
aaaa) with a .dat format.

VARIABLE:
Names are mode item1 item2 
item3 item4 item5 item6  
item7 item8 item9;

Indicates the grouping variable (in this case mode 
of data collection, but it could also be country or 
a cultural group) and the items in the data file.

grouping is mode (1 = off, 
2 = on);

The variable mode contains two values, each 
indicating a different mode of data collection: the 
offline group (indicated by the value of 1) and the 
online group (indicated by the value of 2). This 
statement indicates that Mplus performs a group 
comparison across these two groups of the model 
described in the Model command below.

missing = all (999); The value 999 in all variables indicates missing 
data.

ANALYSIS:
model = configural metric 
scalar

This is a new convenience feature included in 
the 7.1 version of Mplus. It tests three models: 
configural, metric, and scalar invariance across 
the groups (online and offline) while adding the 
appropriate constraints of parameters for each 
model.
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Syntax Explanations
MODEL:
LAT1 by item1 item2 item3;
LAT2 by item4 item5 item6;
LAT3 by item7 item8 item9;

Specification of the latent variables loading on 
their respective items. For example, latent variable 
LAT1 loads on three items: item1, item2, and item3.

OUTPUT:
stand; modindices;

This command produces output about the 
estimated standardized parameters (in addition 
to the unstandardized ones) and the modification 
indices.

The model displayed in the Model command is tested for both groups. Mplus 
7.1 and newer versions contain a convenience feature in the Analysis command as 
shown in the table. Three levels of measurement invariance are tested in separate 
models by adding the statement presented in the Analysis command in Table 1. 

Model identification

Identification of the model implies adding constraints to the model to achieve 
a unique set of estimated parameters. Model parameters cannot be estimated 
if the model is not identified (Byrne, 2010). For example, the model presented 
in Figure 1 is not identified and cannot be estimated (for an extensive review 
about the topic of identification, see Bollen, 1989). 

Several authors have proposed different ways to identify an SEM model (see, 
e.g., Little, Slegers, & Card, 2006). In the following illustration we use Little et 
al.’s (2006) second method that they described as the marker-variable method. 
This method chooses one indicator for each latent variable of interest, and con-
straints two parameters of the indicator in all the groups to be compared: the 
factor loading and the intercept. The factor loading of the marker (or reference) 
indicator is constrained to equal to 1, and the intercept of that indicator is con-
strained to equal to zero. The two constraints of the indicator parameters hold 
for all groups. The means of the latent variables are freely estimated in all groups. 

Model identification in Amos
The researcher chooses one of the items for each latent variable to be the marker 
or reference indicator, and constrains its factor loading to 1 in all groups. It does 
not matter which indicator’s factor loading is constrained to 1. Constraining 
the factor loadings to 1 is conducted by clicking the respective regression path, 
choosing the object properties window, introducing 1 as the regression weight, 
and marking in the box for all groups, as illustrated in Figure 4.
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Figure 4. Model identification in Amos.
Before constraining the intercept of this item to zero, it is necessary to include 

mean and intercept parameters into the model because they are not estimated 
by default in Amos. This can be done by using the following path of commands 
in the menu: view à analysis properties à estimation à estimate means and 
intercepts, as presented in Figure 5.
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Figure 5. Estimating means and intercepts in Amos.

Constraining the intercept of the reference indicator to zero in all groups is 
conducted by clicking the respective indicator, choosing the object properties 
window, introducing the value ‘0’ as the intercept parameter of that indicator, 
and marking in the box for all groups (see Figure 4), to guarantee that the con-
straint will apply for all the different samples (groups) in the analysis. 

Model identification in Mplus
Mplus constrains by default the factor loading of the first indicator listed in 
the Model command for each latent variable to 1. Thus, the model described in 
the syntax presented in Table 1 for Mplus is identified. The means of the latent 
variables in one of groups are constrained to zero (Little, Slegers, & Card, 2006), 
and this group becomes the reference group for the mean comparison. Both the 
model evaluation and the decision regarding whether measurement invariance 
is established or not are based on the model fit comparison between the models.
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Model estimation and evaluation

There are two main approaches to evaluate the quality of the model. The first 
approach relies on the global fit indices. The other approach, presented recently 
by Saris, Satorra, and van der Veld (2009), criticizes the use of global fit measures 
and focuses on testing local misspecifications. In this paper, we focus on the 
first approach, because it is the approach which is currently most often used by 
applied researchers.

The basic global fit measure is the chi-square (χ2; see Jöreskog, 1969) which 
tests the hypothesis that the observed covariance matrix equals the hypothesized 
matrix. However, some problems with χ2 have been recognized in the literature 
(e.g., Bentler & Bonett, 1980; Hu & Bentler, 1998; Hu, Bentler, & Kano, 1992; Kaplan, 
1990). One of the problems of the χ2 is that it is sensitive to sample size, and as 
a result it rejects good models with irrelevant or minor misspecifications in large 
samples (Bentler & Bonett, 1980). Instead, global fit indices and cutoff criteria were 
proposed in the literature, for example, by Hu and Bentler (1999) or by Marsh, 
Hau, and Wen (2004) for evaluating CFA models. Several other authors (Cheung 
& Rensvold, 2002; Chen 2007) proposed cutoff criteria for various fit measures to 
evaluate subsequent levels of measurement invariance in MGCFA. Table 2 presents 
a summary of global fit measures which are often used in the literature to evaluate 
measurement invariance and their recommended cutoff criteria.

A given level of measurement invariance is supported by the data when the 
changes of model fit indices are smaller than the values indicated in Table 2 on 
the last column when moving from a less restricted to a more restricted model. 
Thus, metric invariance is established when the change in model fit between 
the configural and the metric invariance models is smaller than the tolerable 
change indicated in Table 2. Scalar invariance is established when the change 
in model fit between the metric and the scalar invariance models is smaller than 
the tolerable change indicated in Table 2. Some scholars tolerate slightly larger 
changes to establish higher levels of measurement invariance (see, e.g., Byrne 
& Stewart, 2006).

Model modification and looking for partial  
measurement invariance

When the change of the fit indices is acceptable according to the cutoff criteria 
proposed by Cheung and Rensvold (2002) as well as by Chen (2007) which are 
indicated in Table 2, the researcher may conclude that measurement invariance 
is supported by the data. When this is the case, comparisons may be conducted 
across samples meaningfully, or samples may be pooled together. However, in 
reality, such a situation seldom occurs. Although the change of model fit indices 
usually exceeds the recommended cutoff criteria, one may still try to establish 
partial measurement invariance. Amos and Mplus provide, in the output, the 
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Model estimation and evaluation

There are two main approaches to evaluate the quality of the model. The first 
approach relies on the global fit indices. The other approach, presented recently 
by Saris, Satorra, and van der Veld (2009), criticizes the use of global fit measures 
and focuses on testing local misspecifications. In this paper, we focus on the 
first approach, because it is the approach which is currently most often used by 
applied researchers.

The basic global fit measure is the chi-square (χ2; see Jöreskog, 1969) which 
tests the hypothesis that the observed covariance matrix equals the hypothesized 
matrix. However, some problems with χ2 have been recognized in the literature 
(e.g., Bentler & Bonett, 1980; Hu & Bentler, 1998; Hu, Bentler, & Kano, 1992; Kaplan, 
1990). One of the problems of the χ2 is that it is sensitive to sample size, and as 
a result it rejects good models with irrelevant or minor misspecifications in large 
samples (Bentler & Bonett, 1980). Instead, global fit indices and cutoff criteria were 
proposed in the literature, for example, by Hu and Bentler (1999) or by Marsh, 
Hau, and Wen (2004) for evaluating CFA models. Several other authors (Cheung 
& Rensvold, 2002; Chen 2007) proposed cutoff criteria for various fit measures to 
evaluate subsequent levels of measurement invariance in MGCFA. Table 2 presents 
a summary of global fit measures which are often used in the literature to evaluate 
measurement invariance and their recommended cutoff criteria.

A given level of measurement invariance is supported by the data when the 
changes of model fit indices are smaller than the values indicated in Table 2 on 
the last column when moving from a less restricted to a more restricted model. 
Thus, metric invariance is established when the change in model fit between 
the configural and the metric invariance models is smaller than the tolerable 
change indicated in Table 2. Scalar invariance is established when the change 
in model fit between the metric and the scalar invariance models is smaller than 
the tolerable change indicated in Table 2. Some scholars tolerate slightly larger 
changes to establish higher levels of measurement invariance (see, e.g., Byrne 
& Stewart, 2006).

Model modification and looking for partial  
measurement invariance

When the change of the fit indices is acceptable according to the cutoff criteria 
proposed by Cheung and Rensvold (2002) as well as by Chen (2007) which are 
indicated in Table 2, the researcher may conclude that measurement invariance 
is supported by the data. When this is the case, comparisons may be conducted 
across samples meaningfully, or samples may be pooled together. However, in 
reality, such a situation seldom occurs. Although the change of model fit indices 
usually exceeds the recommended cutoff criteria, one may still try to establish 
partial measurement invariance. Amos and Mplus provide, in the output, the 
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modification index (MI) and the expected parameter change (EPC) for mis-
specified parameters (Saris, Satorra, & Sörbom, 1987; Sörbom, 1989). The MI 
provides information on the minimal decrease in the χ2 of a model when a given 
constraint is released. A decrease in χ2 leads to an improvement of the model. 
The EPC provides a prediction of the minimal change of the given parameter 
when released (Saris et al., 1987). Thus, the EPC provides a direct estimate of the 
size of the parameter change in the modified model, whereas the MI provides 
a significance test for the estimated misspecification (Saris et al., 1987).

Researchers may look for the EPC of parameters which are constrained to be 
equal across groups that cause the largest misspecification and release them (Saris 
et al., 2009). This modification leads to a global model fit improvement. Researchers 
testing for (partial) metric measurement invariance may release the equality con-
straints of factor loadings which cause the largest misspecification in the model, 
whereas researchers testing for (partial) scalar invariance may release the cross-
-group equality constraints of intercepts which cause the largest misspecification 
in the model. If the parameters of two or more indicators of a given latent variable 
are still constrained to be equal across groups, and the change of global model fit 
indices is below the given cutoff criteria compared to a model with a lower level 
of invariance, one may conclude that partial invariance is supported by the data. 

Testing for partial measurement invariance in Amos
Releasing certain constraints in Amos may be done in the models window. After 
opening a given model (measurement weights for the metric invariance model 
or measurement intercepts for the scalar invariance model), one can see all the 
equality constraints listed for that model, as presented in Figure 6. 

To release some of these constraints, one simply deletes them from the list. 
After deleting the constraints, one should rerun the modified model and inspect 
the global fit indices. If the global fit indices of the modified model fulfill the 
cutoff criteria, the researcher may conclude that partial invariance is given if 
the parameters of at least two items per latent variable are equal across groups. 
Otherwise, one should repeat the procedure until the fit is satisfactory.

Testing for partial measurement invariance in Mplus
The model specified in Table 1 tests for scalar invariance after omitting the 
Analysis command. When the Analysis command is omitted, the default of 
Mplus sets all factor loadings and intercepts to be equal. In this model, factor 
loadings and intercepts are constrained to be equal across the online and offline 
samples. Releasing the equality constraints of single parameters (factor loadings 
or intercepts) in some of the groups is possible in the Model command. An addi-
tional statement introduced in the model for one of the groups will overwrite the 
default cross-groups equality constraints as described in Table 3 below. The sta-
tement indicates the name of the group whose equality constraints are released 
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and lists the parameters that are released. Table 3 presents an example of how 
to specify partial metric and partial scalar invariance across the online and the 
offline samples, assuming that the loading of item5 and the intercept of item8 
are noninvariant. All the other commands listed in Table 1 remain unchanged.

Figure 6. Equality constraints of parameters in Amos.

Table 3 
Part of an Mplus Syntax Which Specifies Partial Metric and Partial Scalar 
Measurement Invariance (the Model Command)

Syntax Explanations

MODEL:
LAT1 by item1 item2 item3;
LAT2 by item4 item5 item6;
LAT3 by item7 item8 item9;

See explanations in Table 1 for this part of the syntax.

Model on 
LAT2 by item5;
[item8];

The statement indicates that the factor loading of 
item5 on the latent variable LAT2 in the online group 
is released, that is, not constrained to be equal to the 
loading of this item in the offline group. It is thus freely 
estimated.
An item name in brackets refers to a release of the 
equality constraint on the intercept of this item. The 
statement indicates that the intercept of item8 in the 
online group is not constrained anymore to be equal 
to the intercept of this item in the offline group and is 
thus freely estimated.
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When more than two groups are compared, this part of the syntax should be 
extended and the parameters in the additional groups should be released as well. 

What to report?

When reporting the results of a measurement invariance test a conclusive full 
account of the output would include a summary of the model specification, 
the factor loadings, and other parameter estimates for each group separately. 
Moreover, for the final models, a description of modifications made to the models 
should be provided along with the values of the global fit measures. However, 
due to restricted space or to word limits in many of the journals, it is often not 
possible to provide such an extensive report. Instead, much of this output may 
be included in an Appendix or on a website, or be provided by the author(s) 
upon request. If space allows, it would be very useful to include the following 
information in the body of the text at the very least: 

1) Descriptive information on the items such as information about the scales 
used, and the distributions and the correlations between the variables.

2) Model specification and global fit measures of the single groups as well as 
the global fit for the different levels of measurement invariance. Although 
RMSEA, CFI, and SRMR are commonly used to discern between well-
-fitting and badly fitting models, it would be useful to complement this 
information by providing also the χ2 values and the number of degrees 
of freedom for each model.

3) The estimator used. Maximum likelihood is the default estimator in Amos 
and Mplus, but it may be replaced by other more advanced procedures 
(such as robust weighted least squares, RWLS, to deal with categorical 
data; see Flora & Curran, 2004).

4) Information concerning all model modifications and global model fit of 
the accepted models. 

Conclusions

Testing for measurement invariance is of great importance while conducting 
any kind of research involving more than one group or when combining data 
gathered using various modes of data collection. Testing for measurement 
invariance may be conducted to estimate whether data collected using online 
and offline modes of data collection are comparable, but is not restricted to this 
goal. The procedure described above can be extended and used for any study 
involving any group comparison, such as gender groups, age groups, language 
groups, or cultural groups. The logic and procedure of how to test for measure-
ment invariance remains essentially the same in all cases and guarantees that 
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conclusions from studies involving and combining various samples are not 
erroneous and that results are not biased.
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