Arbuckle, J. L. (2012). Amos 21 user’s guide. Chicago, IL: IBM SPSS.
Google Scholar
Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.
Google Scholar
Bentler, P. M. & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance-structures. Psychological Bulletin, 88(3), 588–606. doi: 10.1037//0033-2909.88.3.588
Google Scholar
Byrne, B. M. (2004). Testing for multigroup invariance using AMOS Graphics: A road less traveled. Structural Equation Modeling, 11(2), 272–300. doi: 10.1207/ s15328007sem1102_8
Google Scholar
Byrne, B. M. (2010). Structural equation modeling with Amos. Basic concepts, applications, and programming. New York, London: Routledge Taylor & Francis Group.
Google Scholar
Byrne, B. M., Shavelson, R. J., & Muthén, B. (1989). Testing for the equivalence of factor covariance and mean structures – the issue of partial measurement invariance. Psychological Bulletin, 105(3), 456–466. doi: 10.1037/00332909.105.3.456
Google Scholar
Byrne, B. M. & Stewart, S. M. (2006). The MACS approach to testing for multigroup invariance of a second-order structure: A walk through the process. Structural Equation Modeling, 13(2), 287–321. doi: 10.1207/s15328007sem1302_7
Google Scholar
Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling, 14(3), 464–504. doi: 10.1177/0734282911406661
Google Scholar
Chen, F. F. (2008). What happens if we compare chopsticks with forks? The impact of making inappropriate comparisons in cross-cultural research. Journal of Personality and Social Psychology, 95(5), 1005–1018. doi: 10.1037/a0013193
Google Scholar
Cheung, G. W. & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9(2), 233–255. doi: 10.1207/S15328007SEM0902_5
Google Scholar
Davidov, E., Schmidt, P., & Billiet, J. (2011). Cross-cultural analysis: Methods and applications. New York: Routledge.
Google Scholar
Horn, J. L. & McArdle, J. J. (1992). A practical and theoretical guide to measurement invariance in aging research. Experimental Aging Research, 18(3–4), 117–144. doi: 10.1080/03610739208253916
Google Scholar
Flora, D. B. & Curran, P. J. (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9(4), 466–491. doi: 10.1037/1082-989X.9.4.466
Google Scholar
Hu, L. T. & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424–453. doi: 10.1037/1082-989x.3.4.424
Google Scholar
Hu, L. T. & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 66(1), 1–55. doi: 10.1080/10705519909540118
Google Scholar
Hu, L. T., Bentler, P. M., & Kano, Y. (1992). Can test statistics in covariance structure-analysis be trusted. Psychological Bulletin, 112(2), 351–362. doi: 10.1037/0033-2909.112.2.351
Google Scholar
Jöreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34(2), 183–202. doi: 10.1007/bf02289343
Google Scholar
Jöreskog, K. G. (1971). Simultaneous factor analysis in several populations. Psychometrika, 36(4), 409–426. doi: 10.1007/bf02291366
Google Scholar
Kaplan, D. (1990). Evaluating and modifying covariance structure models – A review and recommendation. Multivariate Behavioral Research, 25(2), 137–155. doi: 10.1207/s15327906mbr2502_1
Google Scholar
Little, T. D., Slegers, D. W., & Card, N. A. (2006). A non-arbitrary method of identifying and scaling latent variable in SEM and MACS models. Structural Equation Modeling, 13(1), 59–72. doi: 10.1207/s15328007sem1301_3
Google Scholar
Marsh, H. W., Hau, K. T., & Wen, Z. (2004). In search of golden rules: Comment on hypothesis-testing approaches to setting cut-off values for fit indexes and dangers in overgeneralizing Hu and Bentler’s (1999) findings. Structural Equation Modeling, 11(3), 320–341. doi: 10.1207/s15328007sem1103_2
Google Scholar
Marsh, H. W., Lüdtke, O., Muthén, B., Asparouhov, T., Morin, A. J. S., Trautwein, U., & Nagengast, B. (2010). A new look at the big five factor structure through exploratory structural equation modeling. Psychological Assessment, 22(3), 471-491. doi: 10.1037/a0019227
Google Scholar
Meredith, W. (1993). Measurement invariance, factor-analysis and factorial invariance. Psychometrika, 58(4), 525–543. doi: 10.1007/bf02294825
Google Scholar
Millsap, R. E. (2011). Statistical approaches to measurement invariance. New York, London: Routledge Taylor & Francis Group.
Google Scholar
Muthén, L. K. & Muthén, B. O. (2012). Mplus user’s guide. Seventh edition. Los Angeles, CA: Muthén & Muthén.
Google Scholar
Saris, W. E., Satorra, A., & Sörbom, D. (1987). The detection and correction of specification errors in structural equation models. Sociological Methodology, 17, 105–129.
Google Scholar
Saris, W. E., Satorra, A., & van der Veld, W. M. (2009). Testing structural equation models or detection of misspecifications? Structural Equation Modeling, 16(4), 561–582. doi: 10.1080/10705510903203433
Google Scholar
Sörbom, D. (1989). Model modification. Psychometrika, 54(3), 371–384. doi: 10.1007/bf02294623
Google Scholar
Steenkamp, J.-B. E. M. & Baumgartner, H. (1998). Assessing measurement invariance in cross-national consumer research. Journal of Consumer Research, 25(1), 78–90. doi: 10.1086/209528
Google Scholar
Van de Vijver, F. J. R. & Poortinga, Y. H. (1997). Towards an integrated analysis of bias in cross-cultural assessment. European Journal of Psychological Assessment, 13(1), 29–37. doi: 10.1027/1015-5759.13.1.29
Google Scholar
Vandenberg, R. J. (2002). Toward a further understanding of and improvement in measurement invariance methods and procedures. Organizational Research Methods, 5(2), 139–158. doi: 10.1177/1094428102005002001
Google Scholar
Vandenberg, R. J. & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3(1), 4–70. doi: 10.1177/109442810031002
Google Scholar