Åberg-Bengtsson, L., & Ottosson, T. (2006). What lies behind graphicacy? Relating students’ results on a test of graphically represented quantitative information to formal academic achievement. Journal of Research in Science Teaching, 43, 43-62. doi: 10.1002/tea.20087.
DOI: https://doi.org/10.1002/tea.20087
Google Scholar
Aldrich, F.K., & Sheppard, L. (2000). Graphicacy: The fourth “r”. Primary Science Review, 64, 8–11.
Google Scholar
Aldrich, F.K., & Sheppard, L. (2001). Tactile graphics in school education: perspectives from pupils. British Journal of Visual Impairment, 19(2), 69–73. https://doi.org/10.1177/026461960101900204.
DOI: https://doi.org/10.1177/026461960101900204
Google Scholar
Aldrich, F.K., Sheppard, L., & Hindle, Y. (2003). First steps towards a model of tactile graphicacy. The Cartographic Journal, 40, 283–287. doi: 10.1179/000870403225013014.
DOI: https://doi.org/10.1179/000870403225013014
Google Scholar
Baker C.M., Milne, R.L., Drapeau, R., Scofield, J., Cynthia L., Bennett, L.C., & Ladner, E.R. (2016). Tactile graphics with a voice. ACM Trans. Access. Comput. 8(1), 1–22.
DOI: https://doi.org/10.1145/2854005
Google Scholar
Beck-Winchatz, B., & Riccobono, M. (2008). Advancing participation of blind students in science, technology, engineering, and math. Advances in Space Research, 42, 1855–1858. doi: 10.1016/j.asr.2007.05.080.
DOI: https://doi.org/10.1016/j.asr.2007.05.080
Google Scholar
Baker, C.M., Milne, L.R., Scofield, J., Bennett, C.L., & Ladner, E.R. (2014). Tactile graphics with a voice: using QR codes to access text in tactile graphics. In Proceedings of the 16th international ACM SIGACCESS conference on Computers & accessibility (ASSETS ’14). Association for Computing Machinery, New York, NY, USA, 75–82. DOI:https://doi.org/10.1145/2661334.2661366.
DOI: https://doi.org/10.1145/2661334.2661366
Google Scholar
Bornschein, J., Prescher, D., & Weber, G. (2014). SVGPlott – Generating Adaptive and Accessible Audio-Tactile Function Graphs. In K. Miesenberger et al. (Eds.): ICCHP 2014, Part I, LNCS 8547, 588–595.
Google Scholar
Brzostek-Pawłowska, J., & Mikułowski, D. (2012). Techniki multimodalne zwiększające dostępność grafiki na stronach WWW i w elektronicznych dokumentach. Elektronika: konstrukcje, technologie, zastosowania, (53)11, 77–84.
Google Scholar
Dias M.B., Rahman M.K., Sanghvi S, & Toyama K. (2010). Experiences with lower-cost access to tactile graphics in India. In Proceedings of the First ACM Symposium on Computing for Development (ACM DEV ’10). Association for Computing Machinery, New York, NY, USA, Article 10, 1–9. DOI:https://doi.org/10.1145/1926180.1926193.
DOI: https://doi.org/10.1145/1926180.1926193
Google Scholar
Edman, P.K. (1992). Tactile Graphics. New York: American Foundation for the Blind.
Google Scholar
Fitzpatrick, D., Murray S., van Leendert A., Brzostek-Pawłowska J., & Rubin, M. (2018). Analysis of ICT Tools and the Mathematical Education of Blind and Visually Impaired people in Ireland, Poland, the Netherlands, and Neighbouring Countries. Retrieved May 8, 2020, from: https://project.euromath.eu/wp-content/uploads/2018/10/O1_Report_EN.pdf.
Google Scholar
Fusco, G. (2020). A11Y Accessible Pandemic Data Bulletin. Retrieved May 30, 2020, from covid.ski.org on.
Google Scholar
Gardner, J.A., Gardner, C.K., Jones, B., Hagen, K., Callaway, T., & Jones, E. (2009). Viewplus Math And Science Curricula With Fully Accessible Illustrations. Conference presentation at CSUN International Conference on Technology and Disabilities, Los Angeles, CA.
Google Scholar
Gardner, J.A., & Bulatov, V. (2008, March). Making Scientific Graphics Accessible With Viewplus Iveo®. In Proceedings of The 23rd Annual International Technology & Persons with Disabilities Conference. Los Angeles, CA: CSUN.
Google Scholar
Gay, S., Rivière M.A., & Pissaloux, E. (2018). Towards Haptic Surface Devices with Force Feedback for Visually Impaired People. In K. Miesenberger, G. Kouroupetroglou (Eds.), Computers Helping People with Special Needs. ICCHP 2018. Lecture Notes in Computer Science, vol 10897. Springer, Cham.
DOI: https://doi.org/10.1007/978-3-319-94274-2_36
Google Scholar
Goncu, C., & Marriott, K. (2015). GraCALC: An Accessible Graphing Calculator. In Proceedings of the 17th International ACM SIGACCESS Conference on Computers & Accessibility (ASSETS ’15). Association for Computing Machinery, New York, NY, USA, 311–312. DOI:https://doi.org/10.1145/2700648.2811353.
DOI: https://doi.org/10.1145/2700648.2811353
Google Scholar
Götzelmann, T. (2018). Visually Augmented Audio-Tactile Graphics for Visually Impaired People, Nuremberg: Nuremberg Institute of Technology.
DOI: https://doi.org/10.1145/3186894
Google Scholar
Cryer, H. (2008). Exploring tactile graphics – which strategies work? RNIB Centre for Accessible Information (CAI) FINAL report, RNIB 24 November.
Google Scholar
Jakubowski, M. (2009). Tyflografika – historia i współczesność, metody i technologie. Tyfloświat, 1, 36–40.
Google Scholar
Lagunas, A., Domínguez, O., Martinez-Conde, S., Macknik S. L., & Del-Río, C. (2017). Human eye visual hyperacuity: Controlled diffraction for image resolution improvement. Journal of Applied Physics. 122, 094501 https://doi.org/10.1063/1.4987017.
DOI: https://doi.org/10.1063/1.4987017
Google Scholar
Landau, S., & Gourgey, K. (2001). Development of a talking tactile tablet. Information, Technology and Disabilities, 7(2).
Google Scholar
Landau, S., Holborow, R. & Jane, E. (2004). The Use of the Talking Tactile Tablet for Delivery of Standardized Tests. In Proceedings of The Annual International Technology & Persons with Disabilities Conference. Los Angeles, CA: CSUN.
Google Scholar
Mech, M., Kwatra, K., Das, S., Chanana, P., Paul ,R., & Balakrishnan, M. (2014). Edutactile – A Tool for Rapid Generation of Accurate Guideline-Compliant Tactile Graphics for Science and Mathematics. In K. Miesenberger, D. Fels, D. Archambault, P. Peňáz, W. Zagler (Eds.), Computers Helping People with Special Needs. ICCHP 2014. Lecture Notes in Computer Science, vol 8548. Springer, Cham.
DOI: https://doi.org/10.1007/978-3-319-08599-9_6
Google Scholar
Michel, A., Frédéric, G., Lemaire-Semail, B., Olivo, P., Casiez, G., & Roussel, N. (2011). STIMTAC: A tactile input device with programmable friction. Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, Santa Barbara, CA, USA, October 16-19, 2011.7-8.
Google Scholar
Mikułowski, D., & Mańkowski, J. (2008). An approach of explaining math function graphs through the sound representation for blind students. Studia Informatica: Systems and Information Technology, 1-2(22), 21–29.
Google Scholar
Moraru, D., & Boiangiu, C.-A. (2015). Seeing without Eyes: Visual Sensory Substitution. Journal of Information Systems & Operations Management, 9(2), 1.
Google Scholar
Pather, A. B. (2014). The Innovative Use of Vector-based Tactile Graphics Design Software to Automate the Production of Raised-line Tactile Graphics in Accordance with BANA’s Newly Adopted Guidelines and Standards for Tactile Graphics, 2010. Journal of Blindness Innovation & Research, 4(1), 1.
DOI: https://doi.org/10.5241/4-49
Google Scholar
Prescher, D., Bornschein, J., & Weber, G. (2014) Production of Accessible Tactile Graphics. In K. Miesenberger, D. Fels, D. Archambault, P. Peňáz, W. Zagler (Eds.), Computers Helping People with Special Needs. ICCHP 2014. Lecture Notes in Computer Science, vol 8548. Springer, Cham.
DOI: https://doi.org/10.1007/978-3-319-08599-9_5
Google Scholar
Ramloll, R., Yu, W., Brewster, S., Riedel, B., Burton, M., & Dimigen, G. (2000). Constructing sonified haptic line graphs for the blind student: First steps. In: Proceedings of the 4th International Conference on Assistive Technologies. ACM.
Google Scholar
Rubin, M., Faderewski, M., & Mikułowski, D. (2015). Badania stanu i potrzeb informatyzacji edukacji matematycznej uczniów niewidomych i słabowidzących w Polsce, e-mentor, 1(58), 34–40.
DOI: https://doi.org/10.15219/em58.1154
Google Scholar
Rowell, J. & Ungar, S. (2003) Feeling your way- a tactile map user survey. In Proceedings of the 21st International Cartographic Conference, Durban, South Africa, 10-16 August 2003.
Google Scholar
Schuffelen, M (2002). On Editing Graphics For The Blind. A manual with examples, and for the interested layman a pictorial overview. Retrieved May 4, 2020, from http://www.heardutchhere.net/grbl/grbl0.html.
Google Scholar
Sorge, V., Ahmetovic, D., Bernareggi, C., & Gardner, J. (2019) Scientific Documents. In Y. Yesilada, S. Harper (Eds.), Web Accessibility. Human–Computer Interaction Series. London: Springer.
DOI: https://doi.org/10.1007/978-1-4471-7440-0_22
Google Scholar
Smith, D.W., & Smothers, S.M. (2012). The role and characteristics of tactile graphics in secondary mathematics and science textbooks in braille. Journal of Visual Impairment & Blindness, 106, 543–554.
DOI: https://doi.org/10.1177/0145482X1210600905
Google Scholar
Sjostrom, C., Danielsson, H., Magnusson, C., & Rassmus-Grohn, K. (2003). Phantom-based haptic line graphics for blind persons. Visual Impairment Research, 5(1), 13.
DOI: https://doi.org/10.1076/vimr.5.1.13.15972
Google Scholar
Suzuki, M., Terada, Y., Kanahori, T., & Yamaguchi, K. (2015). New Tools to Convert PDF Math Contents into Accessible e-Books Efficiently. Studies in health technology and informatics, 217, 1060–1064.
Google Scholar
Thinkable. Retrieved from https://thinkable.nl/tactileview-a-wealth-of-tactile-images-for-a-visual-impaired-person/ on March 15, 2020.
Google Scholar
Taibbi, M., Bernareggi, C., Gerino, A., Ahmetovic, D., & Mascetti, S. (2014). AudioFunctions: Eyes-Free Exploration of Mathematical Functions on Tablets. Computers Helping People with Special Needs: Part I, 537.
Google Scholar
Więckowska, E. (2011). Instrukcja tworzenia i adaptowania ilustracji i materiałów tyflograficznych dla uczniów niewidomych. Retrieved April 21, 2020, from http://pzn.org.pl/wp-content/uploads/2016/07/instrukcja_tworzenia_i_adaptowania_ilustracji_i_materialow_tyflograficznych_dla_niewidomych.pdf.
Google Scholar
Wiazowski, J. (2013). Creating tactile images - decision making process. In Proceedings of the 7th International Convention on Rehabilitation Engineering and Assistive Technology (i-CREATe ’13). Singapore Therapeutic, Assistive & Rehabilitative Technologies (START) Centre, Midview City, SGP, Article 58, 1–4.
Google Scholar
Wiazowski, J. (2015). Proces efektywnego doboru technologii wspierających edukację osób niewidomych i słabowidzących. In: K. Czerwińska, M. Paplińska, M. Walkiewicz-Krutak (Eds.), Tyflopedagogika wobec współczesnej przestrzeni edukacyjno-rehabilitacyjnej (15 –178). Warszawa: APS.
Google Scholar
Yayla, L. (2009). Huseby Zoom maps: A design methodology for tactile graphics. Journal of Visual Impairment & Blindness, 103(5), 270–276.
DOI: https://doi.org/10.1177/0145482X0910300505
Google Scholar
Zebehazy, K.T., & Wilton, A.P. (2014). Straight from the source: Perceptions of students with visual impairments about graphic use. Journal of Visual Impairment & Blindness, 108(4), 275–286.
DOI: https://doi.org/10.1177/0145482X1410800403
Google Scholar