Aksnes, Dag Lorents. 2015. “Sverdrup critical depth and the role of water clarity in Norwegian Coastal Water.” ICES Journal of Marine Science 72(6): 2041-2050. https://doi.org/10.1093/icesjms/fsv029.
DOI: https://doi.org/10.1093/icesjms/fsv029
Google Scholar
Behrenfeld, Michael J. 2010. “Abandoning Sverdrup’s critical depth hypothesis on phytoplankton blooms.” Ecology 91: 977-989. https://doi.org/10.1890/09-1207.1.
DOI: https://doi.org/10.1890/09-1207.1
Google Scholar
Behrenfeld, Michael J., Emmanuel S. Boss. 2014. “Resurrecting the Ecological Underpinnings of Ocean Plankton Blooms.” Annu. Rev. Marine. Sci. 6: 167-194. https://doi.org/10.1146/annurev-marine-052913-021325.
DOI: https://doi.org/10.1146/annurev-marine-052913-021325
Google Scholar
Behrenfeld, Michael J., Emmanuel S. Boss. 2017. “Student’s tutorial on bloom hypotheses in the context of phytoplankton annual cycles.” Glob Change Biol. 24:55-77. https://doi.org/10.1111/gcb.13858.
DOI: https://doi.org/10.1111/gcb.13858
Google Scholar
Bernard, Olivier, Liu-Di Lu. 2022. “Optimal optical conditions for Microalgal production in photobioreactors.” Journal of Process Control 112: 69-77. https://doi.org/10.1016/j.jprocont.2022.03.001.
DOI: https://doi.org/10.1016/j.jprocont.2022.03.001
Google Scholar
Chavez, Francisco P., Monique Messié, J. Timothy Pennington. 2011. “Marine Primary Production in Relation to Climate Variability and Change.” Annu. Rev. Mar. Sci. 3: 227-260. https://doi.org/10.1146/annurev.marine.010908.163917.
DOI: https://doi.org/10.1146/annurev.marine.010908.163917
Google Scholar
Diehl, Sebastian, Stella A. Berger, Quentin Soissons, Darren P. Giling, Herwig Stibor. 2015. “An experimental demonstration of the critical depth principle.” ICES Journal of Marine Science 72(6): 2051-2060. https://doi.org/10.1093/icesjms/fsv032.
DOI: https://doi.org/10.1093/icesjms/fsv032
Google Scholar
Falkowski, Paul G., John A. Raven. 1997. Aquatic Photosynthesis. Massachusetts: Blackwell Science.
Google Scholar
Falkowski, Paul. 2012. “Ocean Science: The power of plankton.” Nature 483: S17-S20. https://doi.org/10.1038/483S17a.
DOI: https://doi.org/10.1038/483S17a
Google Scholar
Ferreira, Afonso, Vanda Brotas, Carla Palma, Carlos Borges, Ana C. Brito. 2021. “Assessing Phytoplankton Bloom Phenology in Upwelling-Influenced Regions Using Ocean Color.” Remote Sens. 13(4): 675. https://doi.org/10.3390/rs13040675.
DOI: https://doi.org/10.3390/rs13040675
Google Scholar
Field, Christopher B., Michael J. Behrenfeld, James T. Randerson, Paul Falkowski. 1998. “Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components.” Science 281(237): 237-240. https://doi.org/10.1126/science.281.5374.237.
DOI: https://doi.org/10.1126/science.281.5374.237
Google Scholar
Fischer, Alexis D., Emily A. Moberg, Harriet Alexander, Emily F. Brownlee, Kristen R. Hunter-Cevera, Kathleen J. Pitz, Sarah Z. Rosengard, and Heidi M. Sosik. 2014. “Sixty years of Sverdrup: A retrospective of progress in the study of phytoplankton blooms.” Oceanography 27(1): 222-235. http://dx.doi.org/10.5670/oceanog.2014.26.
DOI: https://doi.org/10.5670/oceanog.2014.26
Google Scholar
Fox, James, Michael J. Behrenfeld, Nils Haёntjens, Alison Chase, Sasha J. Kramer, Emmanuel Boss, Lee Karp-Boss, Nerissa L. Fisher, W. Bryce Penta, Toby K. Westberry, Kimberly H. Hasley. 2020. “Phytoplankton Growth and Productivity in the Western North Atlantic: Observations of Regional Variability from the NAAMES Field Campaigns.” Front. Mar. Sci. 7: https://doi.org/10.3389/fmars.2020.00024.
DOI: https://doi.org/10.3389/fmars.2020.00024
Google Scholar
Gameiro, Carla, Paulo Cartaxana, Vanda Brotas. 2007. “Environmental drivers of phytoplankton distribution and composition in Tagus Estuary, Portugal.” Estuarine Coastal and Shelf Science 75: 21034. https://doi.org/10.1016/j.ecss.2007.05.014.
DOI: https://doi.org/10.1016/j.ecss.2007.05.014
Google Scholar
Gerla, Daan J., Wolf M. Mooij, Jef Huisman. 2011. “Photoinhibition and the assembly of light-limited phytoplankton communities.” Oikos 120(3): 359-368. https://doi.org/10.1111/j.1600-0706.2010.18573.x.
DOI: https://doi.org/10.1111/j.1600-0706.2010.18573.x
Google Scholar
Gran, Haaken Hasberg, Trygve Braarud. 1935. “A Quantitative Study of the Phytoplankton in the Bay of Fundy and the Gulf of Maine (including Observations on Hydrography, Chemistry and Turbidity).” Journal of the Biological Board of Canada 1(5): 279-467. http://aquaparadox.obs-vlfr.fr/html/PFD/Taxonomic%20Monographs/GranBraarud1935.pdf.
DOI: https://doi.org/10.1139/f35-012
Google Scholar
Hsu, Sze-Bi, Chiu-Ju Lin, Chih-Hao Hsieh, Kohei Yoshiyama. 2013. “Dynamics of Phytoplankton Communities Under Photoinhibition.” Bull Math Biol 75(7): 1207-1232. https://doi.org/10.1007/s11538-013-9852-3.
DOI: https://doi.org/10.1007/s11538-013-9852-3
Google Scholar
Huisman, Jef, and Franz J. Weissing. 1994. “Light-Limited Growth and Competition for Light in Well-Mixed Aquatic Environments: An Elementary Model.” Ecology 75(2): 507-520. https://doi.org/10.2307/1939554.
DOI: https://doi.org/10.2307/1939554
Google Scholar
Huisman, Jef, Hans C. Matthijs, Petra M. Visser, Hans Balke, Corrien A. Sigon, Jutta Passarge, Franze J. Weissing, Luuc R. Mur. 2002. “Principles of the light-limited chemostat: theory and ecological applications.” Antonie Van Leeuwenhoek 81(1-4): 117-133. https://doi.org/10.1023/a:1020537928216.
DOI: https://doi.org/10.1023/A:1020537928216
Google Scholar
Huisman, Jef. 1999. “Population dynamics of light-limited phytoplankton: microcosm experiments.” Ecology 80(1): 202-210. https://doi.org/10.1890/0012-9658(1999)080[0202:PDOLLP]2.0.CO;2.
DOI: https://doi.org/10.1890/0012-9658(1999)080[0202:PDOLLP]2.0.CO;2
Google Scholar
Kirk, John T. O. 1983. Light and Photosynthesis in Aquatic Ecosystems. Cambridge: Cambridge University Press.
Google Scholar
Kislik, Chippie, Iryna Dronova, Maggi Kelly. 2018. “UAVs in Support of Algal Bloom Research: A Review of Current Applications and Future Opportunities.” Drones 2(4): 35. https://doi.org/10.3390/drones2040035.
DOI: https://doi.org/10.3390/drones2040035
Google Scholar
Kovač, Žarko, Trevor Platt, Shubha Sathyendranath. 2021. “Sverdrup meets Lambert: analytical solution for Sverdrup’s critical depth.” ICES Journal of Marine Science 78(4): 1398-1408. https://doi.org/10.1093/icesjms/fsab013.
DOI: https://doi.org/10.1093/icesjms/fsab013
Google Scholar
Kowal, Apolinary L., Maria Świderska-Bróż, Małgorzata Wolska. 2022. Oczyszczanie wody [Water Purification], vol. 1. Zasoby, wymagania, ocena jakości i monitoring [Resources, requirements, quality assessment and monitoring]. Warszawa: PWN.
Google Scholar
Martínez, Carlos, Francis Mairet, Olivier Bernard. 2018a. “Theory of turbid microalgae cultures.” J Theor Biol. 456: 190-200. https://doi.org/10.1016/j.jtbi.2018.07.016.
DOI: https://doi.org/10.1016/j.jtbi.2018.07.016
Google Scholar
Martínez, Carlos, Francis Mairet, Olivier Bernard. 2018b. “Maximizing microalgae productivity in a light-limited chemostat.” IFAC-PapersOnLine 51(2): 735-740. https://doi.org/10.1016/j.ifacol.2018.04.001.
DOI: https://doi.org/10.1016/j.ifacol.2018.04.001
Google Scholar
Mignot, A., R. Ferrari, H. Claustre. 2018. “Floats with bio-optical sensors reveal what processes trigger the North Atlantic bloom.” Nat Commun 9(1): 190. https://doi.org/10.1038/s41467-017-02143-6.
DOI: https://doi.org/10.1038/s41467-017-02143-6
Google Scholar
Morel, André. 1988. “Optical modeling of the upper ocean in relations to its biogenous matter content (case-I waters).” Journal of Geophysical Research 93(C9): 0749-10768. https://doi.org/10.1029/JC093iC09p10749. hal-03277765.
DOI: https://doi.org/10.1029/JC093iC09p10749
Google Scholar
Paparella, Francesco, Marcello Vichi. 2019. “Stirring, Mixing, Growing: Microscale Processes Change Larger Scale Phytoplankton Dynamics.” Frontiers in Marine Sciences vol. 7. https://doi.org/10.3389/fmars.2020.00654.
DOI: https://doi.org/10.3389/fmars.2020.00654
Google Scholar
Pinchin, Karen. 2022. “Protecting Alaska’s Harvest.” Scientific American 326(2): 57-69. https://www2.whoi.edu/site/andersonlab/wp-content/uploads/sites/20/2022/01/Scien-Am-Arctic-harvests-Jan-2022.pdf.
Google Scholar
Platt, Trevor, David F. Bird, Shubha Sathyendranath. 1991. “Critical depth and marine primary production.” Proc. R. Soc. Lond. B, 246(1317): 205-217. https://doi.org/10.1098/rspb.1991.0146.
DOI: https://doi.org/10.1098/rspb.1991.0146
Google Scholar
Platt, Trevor, David S. Broomhead, Shubha Sathyendranath, Andrew M. Edwards, Eugene J. Murphy. 2003. “Phytoplankton Biomass and Residual Nitrate in the Pelagic Ecosystem.” Proceedings: Mathematical, Physical and Engineering Sciences 459(2033): 1063-1073. http://www.jstor.org/stable/3559993.
DOI: https://doi.org/10.1098/rspa.2002.1079
Google Scholar
Reynolds, Colin S. 1987. “The response of phytoplankton communities to changing lake environments.” Schweiz. Z. Hydrol 49: 220-236. https://doi.org/10.1007/BF02538504.
DOI: https://doi.org/10.1007/BF02538504
Google Scholar
Riley, Gordon A. 1942. “The Relationship of Vertical Turbulence and Spring Diatom Flowerings.” Journal of Marine Research 5(1): 67-87. https://peabody.yale.edu/sites/default/files/documents/publications/jmr05-01-05GARILEY1942.pdf.
Google Scholar
Riley, Gordon A. 1946. Factors controlling phytoplankton populations on Georges Bank, Contribution No. 353 from the Woods Hole Oceanographic Institution, 54-73. https://images.peabody.yale.edu/publications/jmr/jmr06-01-04.pdf.
Google Scholar
Rumyantseva, Anna, Stephanie Henson, Adrian Martin, Andrew F. Thompson, Gillian M. Damerell, Jan Kaiser, Karen J. Heywood. 2019. “Phytoplankton spring bloom initiation: The impact of atmospheric forcing and light in the temperate North Atlantic Ocean.” Progress in Oceanography 178: 102202. https://doi.org/10.1016/j.pocean.2019.102202.
DOI: https://doi.org/10.1016/j.pocean.2019.102202
Google Scholar
Sathyendranath, Shubha, Rubao Ji, Howard I. Browman. 2015. “Revisiting Sverdrup's critical depth hypothesis.” ICES Journal of Marine Science 72(6): 1892-1896. https://doi.org/10.1093/icesjms/fsv110.
DOI: https://doi.org/10.1093/icesjms/fsv110
Google Scholar
Smetacek, Victor, Uta Passow. 1990. “Spring bloom initiation and Sverdrup critical-depth model.” Limnology and Oceanography 35(1): 228-234. https://doi.org/10.4319/lo.1990.35.1.0228.
DOI: https://doi.org/10.4319/lo.1990.35.1.0228
Google Scholar
Sverdrup, Harald U. 1953. „On conditions for the vernal blooming of phytoplankton.” J. Cons. perm. int. Explor. Mer 18: 287-295.
DOI: https://doi.org/10.1093/icesjms/18.3.287
Google Scholar
Szeligiewicz, Wojciech. 1996. “Sverdrup critical depth model reformulation by self-shading effect inclusion.” 3rd European Conference on Mathematics Applied to Biology and Medicine, Heidelberg, 6-10.10.1996, (Abstracts p. 326).
Google Scholar
Szeligiewicz, Wojciech. 1997. “Consequences of neglecting density-dependent effects in steady-state properties of phytoplankton models.” Polskie Archiwum Hydrobiologii 44(3): 323-328.
Google Scholar
Szeligiewicz, Wojciech. 1998. “Phytoplankton blooms predictions – a new turn for Sverdrup’s critical depth concept.” Polskie Archiwum Hydrobiologii 45(4): 501-511.
Google Scholar
Szeligiewicz, Wojciech. 1999. “Critical depth concept: current state and prospects.” Acta Hydrobiologica 41(1999), Suppl. 6: 243-247. https://rcin.org.pl/dlibra/publication/167117/edition/152185/content.
Google Scholar
Szeligiewicz, Wojciech. 2000. “Is it possible to evaluate critical mixing depth without knowing phytoplankton loss rate? Theoretical premises.” Polskie Archiwum Hydrobiologii 47(2): 257-279.
Google Scholar
Talling, John Francis. 1957. “The phytoplankton population as a compound photosynthetic system.” New Phytol. 56: 133-149. https://doi.org/10.1111/J.1469-8137.1957.TB06962.X.
DOI: https://doi.org/10.1111/j.1469-8137.1957.tb06962.x
Google Scholar
Tett, Paul, A. Edwards. 1984. “Mixing and plankton: an interdisciplinary theme in oceanography.” Oceanography and Marine Biology: An annual review 22: 99-123. https://doi.org/10.1201/9781482267242.
DOI: https://doi.org/10.1201/9781482267242
Google Scholar
Várbíró, Gabor, J. Padisák, Z. Nagy-László, A. Abonyi, I. Stanković, M. Gligora Udovič, V. B-Béres, G. Borics. 2018. “How length of light exposure shapes the development of riverine algal biomass in temperate rivers?” Hydrobiologia 809: 53-63. https://doi.org/10.1007/s10750-017-3447-1.
DOI: https://doi.org/10.1007/s10750-017-3447-1
Google Scholar
Wang, Tongyu, Chen Fajin, Zhang Shuwen, Pan Jiai, Devlin Adam Thomas, Ning Hao, Zeng Weiqiang. 2020. “Remote Sensing and Argo Float Observations Reveal Physical Processes Initiating a Winter-Spring Phytoplankton Bloom South of the Kuroshio Current Near Shikoku.” Remote Sens. 12(24): 4065. https://doi.org/10.3390/rs12244065.
DOI: https://doi.org/10.3390/rs12244065
Google Scholar
Weissing, Franz J., Jef Huisman. 1994. “Growth and Competition in a Light Gradient.” Journal of Theoretical Biology 168(3): 323-336. https://doi.org/10.1006/jtbi.1994.1113.
DOI: https://doi.org/10.1006/jtbi.1994.1113
Google Scholar
Wofsy, Steven C. 1983. “A simple model to predict extinction coefficients and phytoplankton biomass in eutrophic waters.” Limnol. Oceanogr. 28: 1144-1155. https://doi.org/10.4319/lo.1983.28.6.1144.
DOI: https://doi.org/10.4319/lo.1983.28.6.1144
Google Scholar
Yang, Bo, Emmanuel S. Boss, Nils Haëntjens, Matthew C. Long, Michael J. Behrenfeld, Rachel Eveleth, Scott C. Doney. 2020. “Phytoplankton Phenology in the North Atlantic: Insights From Profiling Float Measurements.” Front. Mar. Sci. 7:139. https://doi.org/10.3389/fmars.2020.00139.
DOI: https://doi.org/10.3389/fmars.2020.00276
Google Scholar