Almeida A. M., Silva A. B., Arau S. S., Cardoso L. A., Santos D. M., Torne J. M. Silva J. M., M. J. Paul, Fevereiro P. S., 2007, Responses to water withdrawal of tobacco plants genetically engineered with the AtTPS1 gene: a special reference to photosynthetic parameters, Euphytica, vol. 154, 113–126.
DOI: https://doi.org/10.1007/s10681-006-9277-2
Google Scholar
Bennett M. D., Leitch I. J., Price H. J., Johnston J. S., 2003, Comparisons with Caenorhabditis (∼100 Mb) and Drosophila (∼175 Mb) using flow cytometry show genome size in Arabidopsis to be ∼157 Mb and thus ∼25% larger than the Arabidopsis genome initiative estimate of ∼125 Mb, Annals of Botany, vol. 91(5), 547-557.
DOI: https://doi.org/10.1093/aob/mcg057
Google Scholar
Bradshaw, H. D., Ceulemans, R., Davis, J., Stettler, R., 2000, Emerging model systems in plant biology: poplar (Populus) as a model forest tree, Journal of Plant Growth Regulation, vol. 19(3), 306-313.
DOI: https://doi.org/10.1007/s003440000030
Google Scholar
Bräutigam K., Vining K. J., Lafon-Placette C., Fossdal C. G., Mirouze M., Marcos J. G., Fluch S., Fraga M. F., Guevara M. Á., Abarca D., Johnsen O., Maury S., Strauss S. H., Campbell M. M., Rohde A., Díaz-Sala C., Cervera M. T., 2013, Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecology and evolution, vol. 3(2), 399-415.
DOI: https://doi.org/10.1002/ece3.461
Google Scholar
Campbell M. M., Brunner A. M., Jones H. M., Strauss S. H., 2003, Forestry’s fertile crescent: the application of biotechnology to forest trees, Plant Biotechnology Journal, vol. 1, 141-154.
DOI: https://doi.org/10.1046/j.1467-7652.2003.00020.x
Google Scholar
Celiński K., Pawlaczyk E., Wojnicka-Półtorak A., Chudzińska E., Prus-Głowacki W., 2013, Cross-species amplification and characterization of microsatellite loci in Pinus mugo Turra, Biologia, vol. 68(4), 621-626.
DOI: https://doi.org/10.2478/s11756-013-0189-z
Google Scholar
Chomicz E., Nowakowska J.A., Tereba A., 2015, Forest decline has not reduced genetic diversity of naturally regenerated Norway spruce from the Beskids, Poland, Silvae Genetica, vol. 64(5/6), 270-278.
DOI: https://doi.org/10.1515/sg-2015-0025
Google Scholar
Chudzinska E., Pawlaczyk E. M., Celinski K., Diatta J., 2014, Response of Scots pine (Pinus sylvestris L.) to stress induced by different types of pollutants–testing the fluctuating asymmetry, Water and environment journal, vol. 28(4), 533-539.
DOI: https://doi.org/10.1111/wej.12068
Google Scholar
Craft K. J., Owens J. D., Ashley A. V., 2007, Application of plant DNA markers in forensic botany: Genetic comparison of Quercus evidence leaves to crime scene trees using microsatellites, Forensic Science International, vol. 165, 64-70.
DOI: https://doi.org/10.1016/j.forsciint.2006.03.002
Google Scholar
García-Gil M. R., Floran V., Östlund L., Gull B. A., 2015, Genetic diversity and inbreeding in natural and managed populations of Scots pine, Tree Genetics & Genomes, vol. 11(2), 28.
DOI: https://doi.org/10.1007/s11295-015-0850-5
Google Scholar
Hu W. J., Harding S. A., Lung J., Popko J. L., Ralph J., Stokke D. D., Tsai C. J., Chiang V. L., 1999, Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees, Nature Biotechnology, vol. 17, 808-812.
DOI: https://doi.org/10.1038/11758
Google Scholar
Jagielska A., 2008, Zastosowanie markerów genetycznych w identyfikacji gatunkowej modrzewia europejskiego (Larix decidua Mill.) i japońskiego (Larix kaempferi Sorg.) oraz ich mieszańców, Leśne Prace Badawcze, vol. 69(1), 21-25.
Google Scholar
Jouanin L., Goujon T., de Nadai V., Martin M.-T., Mila I., Vallet C. Pollet B., Yoshinaga A., Chabbert B., Petit-Conil M., Lapierre C., 2000, Lignification in transgenic poplars with extremely reduced caffeic acid O-methyltransferase activity, Plant Physiology, vol. 123, 1363-1374.
DOI: https://doi.org/10.1104/pp.123.4.1363
Google Scholar
Kellison R., 2007, Value-added products from forest biotechnology, Euphytica, vol. 154, 279-288.
DOI: https://doi.org/10.1007/s10681-006-9186-4
Google Scholar
Kellison R. C., Balocchi C. E., Valenzuela S., Rodriguez J., 2007, Forest biotechnology: an extension of tree improvement, International Journal of Biotechnology, vol. 9, 448-459.
DOI: https://doi.org/10.1504/IJBT.2007.014271
Google Scholar
Konecka A., Tereba A., Bieniek J., Nowakowska J. A., 2018, Porównanie zmienności genetycznej pokolenia matecznego i sztucznie wyhodowanego potomstwa sosny zwyczajnej na podstawie analiz DNA, Sylwan, vol. 162(1), 32-40.
Google Scholar
Naydenov K., Senneville S., Beaulieu J., Tremblay F., Bousquet J., 2007, Glacial variance in Eurasia: mitochondrial DNA evidence from Scots pine for a complex heritage involving genetically distinct refugia at mid-northern latitudes and in Asia Minor, BMC Evolutionary Biology, vol. 7(1), 233.
DOI: https://doi.org/10.1186/1471-2148-7-233
Google Scholar
Nowakowska J., 2004, Zastosowanie roślin transgenicznych w leśnictwie – perspektywy i zagrożenia, Biotechnologia, vol. 3(66), 78-86.
Google Scholar
Nowakowska J. A., Borys M., Oszako T., 2013, Detection of Heterobasidion annosum (s. str.) and H. parviporum in infected Picea abies (L. Karst.) stumps based on DNA analysis, Problems of Forensic Sciences, vol. 93, 465-480.
Google Scholar
Nowakowska J. A., Pasternak T., 2014, Zastosowanie analiz DNA drewna w postępowaniu karnym, wyd. CILP, Warszawa.
Google Scholar
Nowicka A., Ukalska J., Simińska J., Szyp-Borowska I., 2013, Characterization and mapping of QTL used in breeding of Scots pine (Pinus sylvestris L.), Folia Forestalia Polonica Seria A-Forestry, vol. 55(4), 168-173.
DOI: https://doi.org/10.2478/ffp-2013-0018
Google Scholar
Orlikowski L. B., Oszako T., Ptaszek M., 2011, Zagrożenie szkółek leśnych przez gatunki Phytophthora, Sylwan, vol. 155(5), 322-329.
Google Scholar
Petit R. J., Brewer S., Bordács S., Burg K., Cheddadi R., Coart E., Cottrell J., Csaikl U. M., van Dam B., Deans J. D., Espinel S., Fineschi S., Finkeldey R., Glaz I., Goicoechea P. G., Jensen J. S., König A. O., Lowe A. J., Madsen S. F., Mátyás G., Munro R. C., Popescu F., Slade D., Tabbener H., Taurchini D., de Vries S. G. M., Ziegenhagen B., Beaulieu J. L., Kremer A., 2002, Identification of refugia and post-glacial colonization routes of European white oaks based on chloroplast DNA and fossil pollen evidence, Forest Ecology Management, vol. 156, 49-74.
DOI: https://doi.org/10.1016/S0378-1127(01)00634-X
Google Scholar
Polok K., Zwijacz-Kozica T., Zieliński R., 2016, Weryfikacja pochodzenia drzewiastych form kosodrzewiny na terenie Tatrzańskiego Parku Narodowego na podstawie polimorfizmu miejsc insercji transpozonów, Sylwan, vol. 160(7), 573-581.
Google Scholar
Sperisen C., Büchler U., Mátyás G., 1998, Genetic variation of mitochondrial DNA reveals subdivision of Norway spruce (Picea abies (L.) Karst.), in: Karp A., Isaac P. G., Ingram D. S. (eds.) “Molecular tools for screening biodiversity”, Springer, Dordrecht, 413-417.
DOI: https://doi.org/10.1007/978-94-009-0019-6_74
Google Scholar
Sanford J. C., 1990, Biolistic plant transformation, Physiologia Plantarum, vol. 79(1), 206-209.
DOI: https://doi.org/10.1034/j.1399-3054.1990.790131.x
Google Scholar
Stein A. J., Rodríguez-Cerezo E., 2010, Low-level presence of new GM crops: an issue on the rise for countries where they lack approval, AgBioForum, vol. 13(2), 173-182.
Google Scholar
Strauss S. H., Campbell M. M., Pryor S. N., Coventry P., Burley J., 2001, Plantation certification and genetic engineering: FSCs ban on research is counterproductive, Journal of Forestry, vol. 99(12), 4-7.
Google Scholar
Tereba A., Woodward S., Konecka A., Bieniek J., Nowakowska J. A., 2017, Analysis of the DNA profile of ash (Fraxinus excelsior L.) to provide evidence of illegal logging, Wood Science and Technology, vol. 51(6), 1377-1387.
DOI: https://doi.org/10.1007/s00226-017-0942-5
Google Scholar
Wachowiak W., Prus-Głowacki W., 2008, Hybridisation processes in sympatric populations of pines Pinus sylvestris L., P. mugo Turra and P. uliginosa Neumann, Plant Systematics and Evolution, vol. 271(1-2), 29-40.
DOI: https://doi.org/10.1007/s00606-007-0609-z
Google Scholar
Wójkiewicz B., Litkowiec M., Wachowiak W., 2016, Contrasting patterns of genetic variation in core and peripheral populations of highly outcrossing and wind pollinated forest tree species, AoB Plants, vol. 8.
DOI: https://doi.org/10.1093/aobpla/plw054
Google Scholar
Vornam B., Kuchma O., Kuchma N., Arkhipov A., Finkeldey R., 2004, SSR markers as tools to reveal mutation events in Scots pine (Pinus sylvestris L.) from Chernobyl, European Journal of Forest Research, vol. 123(3), 245-248.
DOI: https://doi.org/10.1007/s10342-004-0026-6
Google Scholar
Zimin A., Stevens K. A., Crepeau M. W., Holtz-Morris A., Koriabine M., Marçais G., Neale D. B., 2014, Sequencing and assembly of the 22-Gb loblolly pine genome, Genetics, vol. 196(3), 875-890.
DOI: https://doi.org/10.1534/genetics.113.159715
Google Scholar
EU Forest Law Enforcement, Governance and Trade Action Plan (FLEGT), http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52003DC0251, dostęp 28.05.2018.
Google Scholar
FAO. 2004, Preliminary review of biotechnology in forestry, including genetic modification. Forest Genetic Resources Working Paper FGR/59E. www.fao.org/docrep/008/ae574e/ae574e00.htm, dostęp 28.05.2018.
Google Scholar