Bergstrand, Susanne, Thérèce Bonnier. 2015. Norra Djurgården som nollstad: En studie av miljöprojektets sista etapp och dess potential [Norra Djurgården as a zero-emissions city: A study of this project’s last phase and potential]. Dissertation, Royal Institute of Technology, Stockholm. Accessed December 7, 2023. https://www.diva-portal.org/smash/get/diva2:839044/FULLTEXT01.pdf.
Google Scholar
Cavali, Matheus, Nelson Libardi Junior, Rodriga de Almeida Mohedano, Paulo Belli Filho, Rejane Helena Ribeiro da Costa, and Armando Borges de Castilhos Junior. 2022. “Biochar and hydrochar in the context of anaerobic digestion for a circular approach: An overview.” Science of the Total Environment 822: 153614. https://doi.org/10.1016/j.scitotenv.2022.153614.
DOI: https://doi.org/10.1016/j.scitotenv.2022.153614
Google Scholar
Clifford, Caroline Burgess. 4.1 Biomass Pyrolysis. The Pennsylvania State University. Accessed December 7, 2023. https://www.e-education.psu.edu/egee439/node/537.
Google Scholar
Correa, Rodriguez Catalina, Tobias Hehr, Ariane Voglhuber-Slavinsky, Yannik Rauscher, Andrea Kruse. 2019. “Pyrolysis vs. hydrothermal carbonization: Understanding the effect of biomass structural components and inorganic compounds on the char properties.” Journal of Analytical and Applied Pyrolysis 140: 134-147. https://doi.org/10.1016/j.jaap.2019.03.007.
DOI: https://doi.org/10.1016/j.jaap.2019.03.007
Google Scholar
Das, Shaon Kumar, Goutam Kumar Ghosh, R. K. Avasthe, Kanchan Sinha. 2021. “Compositional heterogeneity of different biochar: Effect of pyrolysis temperature and feedstocks.” Journal of Environmental Management 278 (Part 2). https://doi.org/10.1016/j.jenvman.2020.111501.
DOI: https://doi.org/10.1016/j.jenvman.2020.111501
Google Scholar
Li, Jiawe, Peitao Zhao, Tian Li, Meng Lei, Weijie Yan, and Shifu Ge. 2020. “Pyrolysis behavior of hydrochar from hydrothermal carbonization of pinewood sawdust.” Journal of Analytical and Applied Pyrolysis, 146: 104771. https://doi.org/10.1016/j.jaap.2020.104771.
DOI: https://doi.org/10.1016/j.jaap.2020.104771
Google Scholar
Li, Simeng, Scott Harris, Aavudai Anandhi, Gang Chen. 2019. “Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses.” Journal of Cleaner Production 215: 890–902. https://doi.org/10.1016/j.jclepro.2019.01.106.
DOI: https://doi.org/10.1016/j.jclepro.2019.01.106
Google Scholar
Lin, Jin, and Song Cheng. 2022. “Catalytic pyrolysis of crofton weed: Comparison of their pyrolysis product and preliminary economic analysis.” Environmental Progress and Sustainable Energy 41(2). https://doi.org/10.1002/ep.13742.
DOI: https://doi.org/10.1002/ep.13742
Google Scholar
Lv, Peng, Ruofei Wu, Jiaofei Wang, Yonghui Bai, Lu Ding, Juntao Wei, Xudong Song, Guangsuo Yu. 2022. “Energy recovery of livestock manure and industrial sludge by co-hydrocarbonisation coupled to pyrolysis and gasification.” Journal of Cleaner Production 374: 133996. https://doi.org/10.1016/j.jclepro.2022.133996.
DOI: https://doi.org/10.1016/j.jclepro.2022.133996
Google Scholar
Manmeen, Ajchareeya, Prawit Kongjan, Arkom Palamanit, Rattana Jariyaboon. 2023. “Biochar and pyrolysis liquid production from durian peel by using slow pyrolysis process: Regression analysis, characterization, and economic assessment.” Industrial Crops and Products 203: 117162. https://doi.org/10.1016/j.indcrop.2023.117162.
DOI: https://doi.org/10.1016/j.indcrop.2023.117162
Google Scholar
Meisel, Kathleen, Andreas Clemens, Christoph Fühner, Marc Breulmann, Stefan Majer, and Daniela Thrän. 2019. “Comparative life cycle assessment of HTC concepts valorizing sewage sludge for energetic and agricultural use.” Energies 12(5): 786. https://doi.org/10.3390/en12050786.
DOI: https://doi.org/10.3390/en12050786
Google Scholar
Miliotti Edoardo, David Casini, Luca Rosi, Giulia Lotti, Andrea Maria Rizzo, David Chiaramonti. 2020. “Lab-scale pyrolysis and hydrothermal carbonization of biomass digestate: Characterization of solid products and compliance with biochar standards.” Biomass and Bioenergy 139: 105593. https://doi.org/10.1016/j.biombioe.2020.105593.
DOI: https://doi.org/10.1016/j.biombioe.2020.105593
Google Scholar
Naturvårdsverket (The Swedish Environmental Protection Agency). 2023. Biokol är en framtidsprodukt [Biochar is a product of the future]. Accessed December 7, 2023. https://www.naturvardsverket.se/amnesomraden/klimatomstallningen/klimatklivet/resultat-i-olika-branscher-2022/biokol-ar-en-framtidsprodukt/.
Google Scholar
Oliveira Neto, Geraldo Cardoso de, Luiz Eduardo Carvalho Chaves, Luiz Fernando Rodrigues Pinto, José Carlos Curvelo Santana, Marlene Paula Castro Amorim, and Mário Jorge Ferreira Rodrigues. 2019. "Economic, Environmental and Social Benefits of Adoption of Pyrolysis Process of Tires: A Feasible and Ecofriendly Mode to Reduce the Impacts of Scrap Tires in Brazil" Sustainability 11, no. 7: 2076. https://doi.org/10.3390/su11072076.
DOI: https://doi.org/10.3390/su11072076
Google Scholar
Olszewski, Maciej P. Sabina A. Nicolae, Pablo J. Arauzo, Maria-Magdalena Titirici, and Andrea Kruse. 2020. “Wet and dry? Influence of hydrothermal carbonization on the pyrolysis of spent grains.” Journal of Cleaner Production 260: 121101. https://doi.org/10.1016/j.jclepro.2020.121101.
DOI: https://doi.org/10.1016/j.jclepro.2020.121101
Google Scholar
Osman, Mohammad Shahril, Desmond Shin Kiing Ting, Kah Yein Cheong, and Peter Nai Yuh Yek. 2023. “Development of self-sustainable pyrolysis system to produce porous biochar from palm kernel shell.” Biomass Conversion and Biorefinery, Preprints, 1–8. https://doi.org/10.1007/s13399-022-02668-x.
DOI: https://doi.org/10.1007/s13399-022-02668-x
Google Scholar
Pourkarimi, Sara, Ahmad Hallajisani, Asghar Alizadehdakhel, and Amideddin Nouralishahi. 2019. “Biofuel production through micro- and macroalgae pyrolysis – A review of pyrolysis methods and process parameters.” Journal of Analytical and Applied Pyrolysis 142: 104599. https://doi.org/10.1016/j.jaap.2019.04.015.
DOI: https://doi.org/10.1016/j.jaap.2019.04.015
Google Scholar
UNDP (United Nations Development Programme). 2023. Globala målen [Global development goals]. Accessed December 7, 2023. https://www.globalamalen.se/om-globala-malen/.
Google Scholar
Yang, Jiantao, Zhiming Zhang, Junyao Wang, Xuelei Zhao, Yong Zhao, Jianqiang Qian, Tengfei Wang. 2023. “Pyrolysis and hydrothermal carbonization of biowaste: A comparative review on the conversion pathways and potential applications of char product.” Sustainable Chemistry and Pharmacy 33: 101106. https://doi.org/10.1016/j.scp.2023.101106.
DOI: https://doi.org/10.1016/j.scp.2023.101106
Google Scholar
Zhou Simiao, Hao Liang, Lujia Han, Guangqun Huang, Zengling Yang. 2019. “The influence of manure feedstock, slow pyrolysis, and hydrothermal temperature on manure thermochemical and combustion properties.” Waste Management,88, 85–95. https://doi.org/10.1016/j.wasman.2019.03.025.
DOI: https://doi.org/10.1016/j.wasman.2019.03.025
Google Scholar