This review deals with the influence of organic farming, as well as with the effects the conversion of conventional to ecological farming systems have had on the quality of soil and biodiversity. Organic farming is defined as a system in which crop and animal production must be balanced, and all means of production needed for plant and animal breeding are produced within the farm. Organic farming prohibits the use of pesticides and artificial fertilizers, therefore is widely perceived as being more environmentally friendly than conventional farming. Organic farming is also identified with the production of high-quality food, with the improvement of animal welfare, as well as associated with rural development. This type of farming aims to sustain the quality and fertility of the soil and to maintain key ecological soil functions. The presented overview shows that organic farming leads to higher soil quality and more biological activity in soil than conventional farming. A growing number of studies also show that organic farming can have a positive effect on ecosystems by increasing biological diversity and by a diversification of the agricultural landscape. This is to prevent the loss of the natural habitat of many wild plant and animal species.
Pobierz pliki
Zasady cytowania
Bibliografia
Alef K., 1995, Soil respiration, in: Alef K., Nannipieri P. (eds), “Methods in Applied Soil Microbiology and Biochemistry”, Academic Press, London, 214-215.
Google Scholar
Alvarez T., Frampton G. K., Goulson D., 2001, Epigeic Collembola in winter wheat un¬der organic, integrated and conventional farm management regimes, Agric. Ecosyst. Environ., 83 , 95-110.
DOI: https://doi.org/10.1016/S0167-8809(00)00195-X
Google Scholar
Araújo A. S. F., Santos V. B., Monteiro R. T. R. 2008, Responses of soil microbial biomass and activity for practices of organic and conventional farming systems in Piauí´ state, Brazil, Eur. J. Soil Biol., 44, 225-230.
Google Scholar
Askegaard M., Eriksen J., Olesen J. E., 2003, Exchangeable potassium and potassium ba-lances in organic crop rotations on a coarse sand, Soil Use Manage, 19, 96-103.
DOI: https://doi.org/10.1079/SUM2002173
Google Scholar
Bengtsson J., Ahnstrom J., Weibull A. C., 2005, The effects of organic agriculture on bio-diversity and abundance: a meta-analysis, J. Appl. Ecol., 42, 261-269.
DOI: https://doi.org/10.1111/j.1365-2664.2005.01005.x
Google Scholar
Berry E. C., Karlen D. L., 1993, Comparison of alternative farming systems. II. Earthworm population density and species diversity, Am. J. Altern. Agr., 8, 21-26.
DOI: https://doi.org/10.1017/S0889189300004872
Google Scholar
Birkhofer K., Bezemer T. M., Bloem J., Bonkowski M., Christensen S., Dubois D., Ekelund F., Fließbach A., Gunst L., Hedlund K., Mäder P., Mikola J., Robin C., Setälä H., Tatin-Froux F., Van der Putten W. H., Scheu S., 2008, Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity, Soil Biol. Biochem., 40, 2297-2308.
DOI: https://doi.org/10.1016/j.soilbio.2008.05.007
Google Scholar
Bongers T., Ferris H., 1999, Nematode community structure as a bioindicator in envi-ronmental monitoring, Trends Ecol. Evol., 14, 224-228.
DOI: https://doi.org/10.1016/S0169-5347(98)01583-3
Google Scholar
Bouché M. B., Al-Addan F., 1997, Earthworms, water infiltration and soil stability: some new assessments, Soil Biol. Biochem., 29, 441-452.
DOI: https://doi.org/10.1016/S0038-0717(96)00272-6
Google Scholar
Boutin C., Jobin B., 1998, Intensity of agricultural practices and effects on adjacent habi¬tats, Ecol. Appl., 8, 544-557.
DOI: https://doi.org/10.1890/1051-0761(1998)008[0544:IOAPAE]2.0.CO;2
Google Scholar
Brennan A., Fortune T., Bolger T., 2006, Collembola abundances and assemblage struc¬tures in conventionally tilled and conservation tillage arable systems, Pedobiologia, 50, 135-145.
DOI: https://doi.org/10.1016/j.pedobi.2005.09.004
Google Scholar
Briar S. S., Grewal P. S., Somasekhar N., Stinner D., Miller S. A., 2007, Soil nematode community, organic matter, microbial biomass and nitrogen dynamics in field plots transitioning from conventional to organic management, Appl. Soil Ecol., 37, 256-266.
DOI: https://doi.org/10.1016/j.apsoil.2007.08.004
Google Scholar
Brickle N. W., Harper D. G. C., Aebischer N. J., Cockayne S. H., 2000, Effects of agricultural intensification on the breeding success of corn buntings Miliaria calandra, J. Appl. Ecol., 37, 742-755.
DOI: https://doi.org/10.1046/j.1365-2664.2000.00542.x
Google Scholar
Czarnecki A. J., Paprocki R., 1997, An attempt to characterize complex properties of agroecosystems based on soil fauna, soil properties and farming system in the north of Poland, Biol. Agric. Hortic., 15, 11-23.
DOI: https://doi.org/10.1080/01448765.1997.9755178
Google Scholar
Dauber J., Purtauf T., Allspach A., Frisch J., Voigtlander K., Wolters V., 2005, Local vs. landscape controls on diversity: a test using surface-dwelling soil macroinvertebrates of differing mobility, Global Ecol. Biogeogr., 14, 213-221.59 Rolnictwo ekologiczne a właściwości gleby i jej różnorodność biologiczna
DOI: https://doi.org/10.1111/j.1466-822X.2005.00150.x
Google Scholar
Diekotter T., Wamser S., Wolters V., Birkhofer K., 2010, Landscape and management effects on structure and function of soil arthropod communities in winter wheat, Agric. Ecosyst. Environ., 137, 108-112.
DOI: https://doi.org/10.1016/j.agee.2010.01.008
Google Scholar
Drinkwater L. E., Letourneau D. K., Workneh F., van Bruggen A. H. C., Shennan C., 1995, Fundamental differences between conventional and organic tomato agroecosystems in California, Ecol. Appl., 5, 1098-1112.
DOI: https://doi.org/10.2307/2269357
Google Scholar
Eggleton P., Vanbergen A. J., Jones D. T., Lambert M. C., Rockett C., Hammond P. M., Beccaloni J., Marriott D., Ross E., Giusti A., 2005, Assemblages of soil macrofauna across a Scottish land-use intensification gradient: influences of habitat quality, heterogeneity and area, J. Appl. Ecol., 42, 1153-1164.
DOI: https://doi.org/10.1111/j.1365-2664.2005.01090.x
Google Scholar
Elmholt S., 1996, Microbial activity, fungal abundance, and distribution of Penicillium and Fusarium as bioindicators of a temporal development of organically cultivated so¬ils, Biol Agric. Hortic., 13, 123-140.
DOI: https://doi.org/10.1080/01448765.1996.9754772
Google Scholar
Elmholt S., Labouriau R., 2005, Fungi in Danish soils under organic and conventional farming, Agric. Ecosyst. Environ., 107, 65-73.
DOI: https://doi.org/10.1016/j.agee.2004.09.009
Google Scholar
Fließbach A., Oberholzer H. R., Gunst L., Mäder P., 2007, Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming, Agric. Ecosyst. Environ., 118, 273-284.
DOI: https://doi.org/10.1016/j.agee.2006.05.022
Google Scholar
Flohre A., Rudnick M., Traser G., Tscharntke T., Eggers T., 2011, Does soil biota bene¬fit from organic farming in complex vs. simple landscapes?, Agric. Ecosyst. Environ., 141, 210-214.
DOI: https://doi.org/10.1016/j.agee.2011.02.032
Google Scholar
Foissner W., 1997, Protozoa as bioindicators in agroecosystems, with emphasis on far¬ming practices, biocides, and biodiversity, Agric. Ecosyst. Environ., 62, 93-103.
DOI: https://doi.org/10.1016/S0167-8809(96)01142-5
Google Scholar
Frampton G. K., Wratten S. D., 2000, Effects of benzimidazole and triazole fungicide use on epigeic species of Collembola in wheat, Ecotox. Environ. Saf., 46, 64-72.
DOI: https://doi.org/10.1006/eesa.1999.1874
Google Scholar
Franke-Snyder M., Douds D. D., Galvez L., Phillips J. G., Wagoner P., Drinkwater L., Morton J. B., 2001, Diversity of communities of arbuscular mycorrhizal (AM) fun¬gi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA, Appl Soil Ecol, 16, 35-48.
DOI: https://doi.org/10.1016/S0929-1393(00)00100-1
Google Scholar
Galvan G. A., Paradi I., Burger K., Baar J., Kuyper T. W., Scholten O. E., Kik C., 2009, Molecular diversity of arbuscular mycorrhizal fungi in onion roots from organic and conventional farming systems in the Netherlands, Mycorrhiza, 19, 317-328.
DOI: https://doi.org/10.1007/s00572-009-0237-2
Google Scholar
Gosling P., Shepherd M., 2005, Long-term changes in soil fertility in organic arable farming systems in England, with particular reference to phosphorus and potassium, Agric. Ecosyst. Environ., 105, 425-432.
DOI: https://doi.org/10.1016/j.agee.2004.03.007
Google Scholar
Holzschuh A., Steffan-Dewenter I., Kleijn D., Tscharntke T., 2007, Diversity of flower-visiting bees in cereal fields: effects of farming system, landscape composition and re¬gional context, J. Appl. Ecol., 44, 41-49.
DOI: https://doi.org/10.1111/j.1365-2664.2006.01259.x
Google Scholar
Hutcheon J. A., Iles D. R., Kendall D. A., 2001, Earthworm populations in conventional and integrated farming systems in the LIFE Projects (SW England) in 1990–2000, Ann. Appl. Biol., 139, 361-372.
DOI: https://doi.org/10.1111/j.1744-7348.2001.tb00150.x
Google Scholar
Joergensen R. G., Mäder P., Fließbach A., 2010, Long-term effects of organic farming on fungal and bacterial residues in relation to microbial energy metabolism, Biol. Fertil. Soils, 46, 303-307.60
DOI: https://doi.org/10.1007/s00374-009-0433-4
Google Scholar
Karg J., Kajak A., Ryszkowski L., 2003, Impact of young shelterbelts on organic matter content and development of microbial and faunal communities of adjacent fields, Pol. J. Ecol., 51, 283-290.
Google Scholar
Kennedy A. C., 1999, Microbial diversity in agroecosystem quality, in: Collins W. W., Qualset C. O. (eds), „Biodiversity in agroecosystems”, CRC Press LLC, Boca Raton, 1-17.
DOI: https://doi.org/10.1201/9781420049244.ch1
Google Scholar
Kirchmann H., 1994, Biological dynamic farming -an occult form of alternative agricul¬ture?, J. Agric. Environ Ethics, 7, 173-187.
DOI: https://doi.org/10.1007/BF02349036
Google Scholar
Kladivko E. J., Akhouri N. M., Weesies G., 1997, Earthworm populations and species distributions under no-till and conventional tillage in Indiana and Illinois, Soil Biol. Biochem., 29, 613-615.
DOI: https://doi.org/10.1016/S0038-0717(96)00187-3
Google Scholar
Lairon D., 2010, Nutritional quality and safety of organic food. A review, Agron. Sustain. Dev., 30, 33-41.
DOI: https://doi.org/10.1051/agro/2009019
Google Scholar
Løes A. K., Øgaard A. F., 1997, Changes in the nutrient content of agricultural soil on conversion to organic farming in relation to farm-level nutrient balances and soil contents of clay and organic matter, Acta Agric. Scand., Sec. B., Soil Plant Sci., 47, 201-214.
DOI: https://doi.org/10.1080/09064719709362462
Google Scholar
Marinari S., Mancinelli R., Campiglia E., Grego S., 2006, Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy, Ecol. Indic., 6, 701-711.
DOI: https://doi.org/10.1016/j.ecolind.2005.08.029
Google Scholar
Medan D., Torretta J. P., Hodara K., de la Fuente E. B., Montaldo N. H., 2011, Effects of agriculture expansion and intensification on the vertebrate and invertebrate diversity in the Pampas of Argentina, Biodivers. Conserv., 20, 3077-3100.
DOI: https://doi.org/10.1007/s10531-011-0118-9
Google Scholar
Mozumder P., Berrens R. P., 2007, Inorganic fertilizer use and biodiversity risk: An empirical investigation, Ecol. Econ., 62, 538-543.
DOI: https://doi.org/10.1016/j.ecolecon.2006.07.016
Google Scholar
Neher D. A., Barbercheck M. E., 1999, Diversity an function of soil mesofauna, in: Collins W. W., Qualset C. O. (eds), „Biodiversity in agroecosystems”, CRC Press LLC, Boca Raton, 27-47.
DOI: https://doi.org/10.1201/9781420049244.ch3
Google Scholar
Neher D. A., Olson R. K., 1999, Nematode communities in soils of four farm cropping management systems, Pedobiologia, 43, 430-438.
Google Scholar
Nguyen M. L., Haynes R. J., Goh K. M., 1995, Nutrient budgets and status in three pairs of conventional and alternative mixed cropping farms in Canterbury New Zealand, Agric. Ecosyst. Environ., 52, 149-162.
DOI: https://doi.org/10.1016/0167-8809(94)00544-O
Google Scholar
Norton L., Johnson P., Joys A., Stuart R., Chamberlain D., Feber R., Firbank L., Manley W., Wolfe M., Hart B., Mathews F., Macdonald D., Fuller R., 2009, Consequences of organic and non-organic farming practices for field, farm and landscape complexity, Agric. Ecosyst. Environ., 129, 221-227.
DOI: https://doi.org/10.1016/j.agee.2008.09.002
Google Scholar
Oehl F., Sieverding E., Mäder P., Dubois D., Ineichen K., Boller T., Wiemken A., 2004, Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi, Oecologia, 138, 574-583.
DOI: https://doi.org/10.1007/s00442-003-1458-2
Google Scholar
Pan F., McLaughlin N. B., Yu Q., Xue A. G., Xu Y., Han X., Li Ch., Zhao D., 2010, Responses of soil nematode community structure to different long-term fertilizer strategies in the soybean phase of a soybean-wheat-corn rotation, Eur. J. Soil Biol., 46, 105-111.
DOI: https://doi.org/10.1016/j.ejsobi.2010.01.004
Google Scholar
Paull J., 2011, Attending the first organic agriculture course: Rudolf Steiner’s agriculture course at Koberwitz, 1924, J Soc Sci, 21, 64-70.61
Google Scholar
Pfiffner L., Luka H., 2007, Earthworm populations in two low-input cereal farming systems, Appl. Soil Ecol., 37, 184-191.
DOI: https://doi.org/10.1016/j.apsoil.2007.06.005
Google Scholar
Postma-Blaauw M. B., de Goede R. G. M., Bloem J., Faber J. H., Brussaard L., 2010, Soil biota community structure and abundance under agricultural intensification and extensification, Ecology, 91, 460-473.
DOI: https://doi.org/10.1890/09-0666.1
Google Scholar
Rahmann G., 2011, Biodiversity and Organic farming: What do we know?, Landbauforschung, 61, 189-208.
Google Scholar
Raupp J., 2001, Manure fertilization for soil organic matter maintenance and its effects upon crops and the environment, evaluated in a long-term trial, in: Rees R.M., Ball B.C., Campbell C.D., Watson, C.A. (eds), „Sustainable Management of Soil Organic Matter”, CABI, London, 301-308.
Google Scholar
Reganold J. P., 1988, Comparison of soil properties as influenced by organic and conventional farming systems, Am J Altern Agricult, 3, 144-155.
DOI: https://doi.org/10.1017/S0889189300002423
Google Scholar
Robinson R. A., Sutherland W. J., 2002, Post-war changes in arable farming and biodiver¬sity in Great Britain, J. Appl. Ecol., 39, 157-176.
DOI: https://doi.org/10.1046/j.1365-2664.2002.00695.x
Google Scholar
Roschewitz I., Gabriel D., Tscharntke T., Thies C., 2005, The effects of landscape com¬plexity on arable weed species diversity in organic and conventional farming, J. Appl. Ecol., 42, 873-882.
DOI: https://doi.org/10.1111/j.1365-2664.2005.01072.x
Google Scholar
Roy M., Brodeur J., Cloutier C., 2005, Seasonal activity of the spider mite predators Stethorus punctillum (Coleoptera: Coccinellidae) and Neoseiulus fallacies (Acarina: Phytoseiidae) in raspberry, two predators of Tetranychus mcdanieli (Acarina: Tetranychidae), Biol. Control, 34, 47-57.
DOI: https://doi.org/10.1016/j.biocontrol.2005.03.012
Google Scholar
Rusek J., 1998, Biodiversity of Collembola and their functional role in the ecosystem, Biodivers. Conserv., 7, 1207-1219.
DOI: https://doi.org/10.1023/A:1008887817883
Google Scholar
Ryszkowski L., Karg J., Bernacki Z. 2003, Biocenotic function of the mid-field woodlots in agricultural landscape of Western Poland: study area and research methodology, Pol. J. Ecol., 51, 269-281.
Google Scholar
Schmidt, M. H., Thies, C., Nentwig, W., Tscharntke, T., 2008. Contrasting responses of arable spiders to the landscape matrix at different spatial scales, J. Biogeogr., 35, 157-166.
Google Scholar
Shannon D., Sen A. M., Johnson D. B., 2002, A comparative study of the microbiology of soils managed under organic and conventional regimes, Soil Use Manage, 18 (supp. s1), 274-283.
DOI: https://doi.org/10.1079/SUM2002130
Google Scholar
Smith H. G., Dänhardt J., Lindström A., Rundlöf M., 2010, Consequences of organic farming and landscape heterogeneity for species richness and abundance of farmland birds, Oecologia 162, 1071-107.
DOI: https://doi.org/10.1007/s00442-010-1588-2
Google Scholar
Stalenga J., Kuś J., 2007, Rolnictwo ekologiczne w Europie i Polsce, w: Harasim A. (red.), „Możliwości rozwoju rolnictwa ekologicznego w Polsce”, Instytut Uprawy, Nawożenia i Gleboznawstwa – Państwowy Instytut Badawczy, Puławy, 9-18.
Google Scholar
Stockdale E. A., Shepherd M. A., Fortune S., Cuttle S. P., 2002, Soil fertility in organic farming systems – fundamentally different?, Soil Use Manage, 18 (supp. s1), 301-308.
DOI: https://doi.org/10.1079/SUM2002143
Google Scholar
Stolze M., Lampkin N., 2009, Policy for organic farming: Rationale and concepts, Food Policy, 34, 237-244.62
DOI: https://doi.org/10.1016/j.foodpol.2009.03.005
Google Scholar
Szanser M., 2003, The effect of shelterbelts on litter decomposition and fauna of adjacent fields: in situ experiment, Pol. J. Ecol., 51, 309-321.
Google Scholar
Tscharntke T., Klein A. M., Kruess A., Steffan-Dewenter I., Thies C., 2005, Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management, Ecol. Lett., 8, 857-874.
DOI: https://doi.org/10.1111/j.1461-0248.2005.00782.x
Google Scholar
Tu C., Louws F. J., Creamer N. G., Mueller J. P., Brownie C., Fager K., Bell M., Hu S., 2006, Responses of soil microbial biomass and N availability to transition strategies from conventional to organic farming systems, Agric. Ecosyst. Environ., 113, 206-215.
DOI: https://doi.org/10.1016/j.agee.2005.09.013
Google Scholar
Twardowski J., 2008, Wpływ uproszczonej uprawy roli na mezofaunę glebową plantacji kukurydzy, Progress in Plant Protection/Postępy w Ochronie Roślin, 48, 371-375.
Google Scholar
Tyburski J., 2007, Żyzność gleby i gospodarka w rolnictwie ekologicznym, w: Harasim A. (red.), „Możliwości rozwoju rolnictwa ekologicznego w Polsce”, Instytut Uprawy, Nawożenia i Gleboznawstwa – Państwowy Instytut Badawczy, Puławy, 35-48.
Google Scholar
Vanbergen A. J., Watt A. D., Mitchell R., Truscott A. M., Palmer S. C. F., Ivits E., Eggleton P., Jones T. H., Sousa J. P., 2007, Scale-specific correlations between habitat heteroge¬neity and soil fauna diversity along a landscape structure gradient, Oecologia, 153, 713-725.
DOI: https://doi.org/10.1007/s00442-007-0766-3
Google Scholar
Wang Y., Tu C., Cheng L., Li C., Gentry L. F., Hoyt G. D., Zhang X., Hu S., 2011, Long-term impact of farming practices on soil organic carbon and nitrogen pools and microbial biomass and activity, Soil Till Res., 117, 8-16.
DOI: https://doi.org/10.1016/j.still.2011.08.002
Google Scholar
Wasilewska L., 2004, Nematofauna of the shelterbelts in the agricultural landscape, Pol. J. Ecol., 52, 99-113.
Google Scholar
Wojewoda D., Russell S. 2003, Impact of shelterbelt on soil properties and microbial activity in an adjacent crop field, Pol. J. Ecol., 51, 291-307.
Google Scholar