Abatzopoulos T. J., Amat F., Baxevanis A. D., Belmonte G., Hontoria F., Maniatsi S., Monscatello S., Mura G., Shadrin N., 2009, Updating geographic distribution of Artemia urmiana Günter, 1890 (Branchiopoda: Anostraca) in Europe: an integrated and interdisciplinary approach, Internat. Rev. Hydrobiol. 94, 560–579.
DOI: https://doi.org/10.1002/iroh.200911147
Google Scholar
Alcorlo P., Baltanás A., Montes C., 2001, Food-web structure in two shallow salt lakes in Los Monegros (NE Spain): energetic vs dynamic constraints, Hydrobiologia 466, 307–316.
DOI: https://doi.org/10.1007/978-94-017-2934-5_28
Google Scholar
Balushkina E. V., 1987, Functional importance of chironomid larvae in continental water bodies, Nauka, Leningrad, (in Russian).
Google Scholar
Balushkina E. V., Winberg G. G., 1979, Dependence between body length and body weight of planktonic crustacean, in: G. G. Winberg (ed.), Experimental and 2eld investigations of biological fundamentals of lakes productivity, Zoological Institute AN USSR, Leningrad, 58–79 (in Russian).
Google Scholar
Balushkina E. V., Petrova N. P., 1989, Functioning of chironomid populations in hypersaline lakes of Crimea, Proc. Zool. Inst. Acad. Sci. USSR 205, 129–140 (in Russian).
Google Scholar
Blindow I., Hargeby A., Andersson G., 2002, Seasonal changes of mechanisms maintaining clear water in a shallow lake with abundant Chara vegetation, Aquatic Botany 72, 315–334.
DOI: https://doi.org/10.1016/S0304-3770(01)00208-X
Google Scholar
Bloesch J., 2003, Sedimentation and lake sedimentation formation, in: P. E. O’Sullivan, C. S. Reynolds (eds), 3e lakes handbook, Volume 1. Limnology and limnetic ecology, Blackwell Publishing, Oxford, 197–229.
DOI: https://doi.org/10.1002/9780470999271.ch8
Google Scholar
Davenport J., Healy A., 2006, Relationship between medium salinity, body density, buoyancy and swimming in Artemia franciscana larvae: constraints on water column use?, Hydrobiologia 556, 295–301.
DOI: https://doi.org/10.1007/s10750-005-9118-7
Google Scholar
Davis J. A., McGuire M., Halse S. A., Hamilton D., Horwitz P., McComb A. J., Froend R. H., Lyons M., Sim L., 2003, What happens when you add salt: predicting impacts of secondary salinisation on shallow aquatic ecosystems by using an alternative-states model, Aust. J. Botany 51, 715–724.
DOI: https://doi.org/10.1071/BT02117
Google Scholar
Finogenova N. P., Lobasheva T. M., 1987, Growth of Tubifex tubifex Muller (Oligochaeta, Tubi2cidae) under various trophic conditions, Internat. Rev. Hydrobiol. 72, 709–726.
DOI: https://doi.org/10.1002/iroh.19870720608
Google Scholar
Galkovskaya G. A., 1980, Rate of oxygen comsumption by rotifers from natural populations, Proc. Acad. Sci. BUSR, Ser. Biol. Sci. 8, 114–116 (in Russian).
Google Scholar
Golterman H. L. (ed.), 1969, Methods for chemical analysis of freshwaters. IBP Handbook, No 8, Blackwell Scienti1c Publications, Oxford and Edinburgh.
Google Scholar
Golterman H. L., 1975, Physiological limnology, Elsevier Scientific Publishing Company, Amsterdam, Oxford.
Google Scholar
Golubkov S. M., 2000, Functional ecology of aquatic insects, Proc. Zoological Institute RAS, St. Petersburg.
Google Scholar
Golubkov S., Kemp R., Golubkov M., Balushkina E., Litvinchuk L., Gubelit Y., 2007, Biodiversity and the functioning of hypersaline lake ecosystems from Crimea Peninsula (Black Sea), Archiv für Hydrobiologie 169, 79–87.
DOI: https://doi.org/10.1127/1863-9135/2007/0169-0079
Google Scholar
Gross E. M., Hilt S., Lombardo P., Mulderij G., 2007, Searching for allelopathic e4ects of submerged macrophytes on phytoplankton – state of the art and open questions, Hydrobiologia 584, 77–88.
DOI: https://doi.org/10.1007/s10750-007-0591-z
Google Scholar
Håkanson L., Boulion V. V., 2001, Regularities in primary production, Secchi depth and 2sh yield and a new system to de2ne trophic and humic state indices for lake ecosystem, Internat. Rev. Hydrobiol. 86, 23–62.
DOI: https://doi.org/10.1002/1522-2632(200101)86:1<23::AID-IROH23>3.0.CO;2-4
Google Scholar
Håkanson L., Boulion V. V., 2002, The lake foodweb–modeling predation and abiotic/biotic interactions, Backhuys Publishers, Leinden.
Google Scholar
Hamilton D. P., Mitchell S. F., 1996, An empirical model for sediment resuspension in shallow lakes, Hydrobiologia 317, 209–220.
DOI: https://doi.org/10.1007/BF00036471
Google Scholar
Hemmingsen A. M., 1960, Energy metabolism as related to body size and respiratory surfaces, and evolution, Rept. Steno Memor. Hospital 9, 7–110.
Google Scholar
Ivanova M. B., Balushkina E. V., Basova S. L., 1994, Structural-functional reorganization of ecosystem of hypehaline lake Saki (Crimea) at increased salinity, Russian Journal of Aquatic Ecology 3, 111–126.
Google Scholar
James W. F., Barko J. W., Butler G. M., 2004, Shear stress and sediment resuspension in relation to submersed macrophyte biomass, Hydrobiologia 515, 181–191.
DOI: https://doi.org/10.1023/B:HYDR.0000027329.67391.c6
Google Scholar
Kamliuk L. V., 1974, Respiration of free living 5atworms and tubemakers and factors a4ecting it, Journal of General Biology 35, 874–885 (in Russian).
Google Scholar
Khmeleva N. N., 1968, Energy trade-off upon respiration, growth and reproduction of Artemia salina L., Sea Biology 15, 71–98 (in Russian).
Google Scholar
Moore P. G., Davenport J., Middleton N. E., 1997, On the density of certain Amphipoda and Isopoda, J. Mar. Biol. Assoc. UK 78, 1–11.
DOI: https://doi.org/10.1017/S0025315400033920
Google Scholar
Moreira-Tureq P. F., 2006, Impact of low salinity years on the metabolism of a hypersaline coastal lagoon (Brazil), Hydrobiologia 429, 133–140.
DOI: https://doi.org/10.1023/A:1004037624787
Google Scholar
Panov V. E.,1988, Growth and production of Amphipoda in: A. F. Alimov (ed.), Communities of freshwater invertebrates in reed-beds, Proc. Zool. Inst. Acad. Sci. USSR, Leningrad, 150–160 (in Russian).
Google Scholar
Petchey O. L., Downing A. L., Mittelbach G. G., Persson L., Steiner F., Warren P. H., Woodward G., 2004, Species loss and the structure and functioning of the multitrophic aquatic systems, Oikos 104, 467–478.
DOI: https://doi.org/10.1111/j.0030-1299.2004.13257.x
Google Scholar
Pinder A. M., Halse S. A., McRae J. M., Shiel R. J., 2005, Occurrence of aquatic invertebrates of the wheatbelt region of Western Australia in relation to salinity, Hydrobiologia 543, 1–24.
DOI: https://doi.org/10.1007/s10750-004-5712-3
Google Scholar
Ruttner-Kolisko A., 1977, Suggestions for biomass calculation of plankton rotifers, Arch. Hydrobiol. Ergebn. Limnol. 8, 71–78.
Google Scholar
Salazkin A. A., Ivanova M. B., Ogorodnikova V. A., 1984, Methodic recommendations on the collection and treatment of materials during hydrobiological researches on freshwater bodies. Zooplankton and its production, State Research Institute of Lake and River Economy, Leningrad (in Russian).
Google Scholar
Scheffer M., 1990, Multiciplity of stable states in freshwater system, Hydrobiologia 200/201, 475–486.
DOI: https://doi.org/10.1007/BF02530365
Google Scholar
Scheffer M., 1998, Ecology of shallow lakes, Chapman and Hall, London.
Google Scholar
Segal R. D., Waite A. M., Hamilton D. P., 2006, Transition from planktonic to benthic algal dominance along a salinity gradient, Hydrobiologia 556, 119–135.
DOI: https://doi.org/10.1007/s10750-005-0916-8
Google Scholar
Shadrin N. V., Golubkov S. M., Balushkina E. V., Orleanskii V. K., Mikhodyuk O. S., 2004, Response of the ecosystem of hypersaline Lake Bakalskoye (Crimea) to climatic characteristics of 2004, Marine Ecological Journal 3, 74 (in Russian).
Google Scholar
Sim L. L., Chambers J. M., Davis J. A., 2006a, Ecological regime shifts in salinised wetland systems. I. Salinity thresholds for the loss of submerged macrophytes, Hydrobiologia 573, 89–107.
DOI: https://doi.org/10.1007/s10750-006-0267-0
Google Scholar
Sim L. L., Davis J. A., Chambers J. M., 2006b, Ecological regime shifts in salinised wetland systems. II. Factors affecting the dominance of benthic microbial communities, Hydrobiologia 573, 109–131.
DOI: https://doi.org/10.1007/s10750-006-0268-z
Google Scholar
Strachlow K., Davis J., Sim L., Chambers J., Halse S., Hamilton D., Horwitz P., McComb A., Froend R., 2005, Temporal changes between ecological regimes in a range of primary and secondary salinized wetland, Hydrobiologia 552, 17–31.
DOI: https://doi.org/10.1007/s10750-005-1502-9
Google Scholar
Stricland J. D. H., Parsons T. R., 1968, A practical handbook of seawater analysis, Fish. Res. Board Can. Bull 167, 1–311.
Google Scholar
Sushchenya L. M., 1972, Intensity of respiration in crustaceans, Naukova Dumka, Kiev (in Russian).
Google Scholar
Takamura N., Kadono Y., Fukushima M., Nakagawa M., Kim B-H., 2003, E4ects of aquatic macrophytes on water quality and phytoplankton communities in shallow lakes, Ecological Research, 381–395.
DOI: https://doi.org/10.1046/j.1440-1703.2003.00563.x
Google Scholar
Timms B. V., 1981, Animal communities in three Victorian lakes of differing salinity, Hydribiologia 81/82, 181–193.
DOI: https://doi.org/10.1007/BF00048715
Google Scholar
Timms B. V., 2005, Salt lakes in Australia: present problems and prognosis for the future, Hydrobiologia 552, 1–15.
DOI: https://doi.org/10.1007/s10750-005-1501-x
Google Scholar
Thornton J. A., 1986, Nutrients in African lake ecosystems, do we know all?, Journal of the Limnological Society of Southern Africa 12, 6-21.
DOI: https://doi.org/10.1080/03779688.1986.9639396
Google Scholar
Vareschi E., 1987, Saline lake ecosystems, Ecological Studies 61, 347–364.
DOI: https://doi.org/10.1007/978-3-642-71630-0_17
Google Scholar
Williams W. D., 1998, Management of inland saline waters. Guidelines of lake management 6, ILEC/UNEP, Kusatsu, Japan.
Google Scholar
Williams W. D., 2002, Environmental threats to salt lakes and the likely status of inland saline ecosystems in 2025, Environmental Conservation 29, 154–167.
DOI: https://doi.org/10.1017/S0376892902000103
Google Scholar
Winberg G. G., 1983, Temperature coefficient of Van Go4 and Arenius’s equation in biology, Journal of General Biology 44, 31–42 (in Russian).
Google Scholar
Winberg G. G., Duncan A. (eds), 1971, Methods for the estimation of production of aquatic animals, Academic Press, London, New York.
Google Scholar
Wurtsbaugh W. A., 1991, Food-web modi2cation by an invertebrate predator in the Great Salt Lake (USA), Oecologia 89, 168–175.
DOI: https://doi.org/10.1007/BF00317215
Google Scholar