Akaracharanya A., Lorliam W., Tanasupawat S., Lee K. C., Lee J. S, 2009, Paenibacillus cellulositrophicus sp. nov., a cellulolytic bacterium from Thai soil, Int. J. Syst. Evol. Micr. 59, 2680-2684.
Google Scholar
Akaracharanya A., Taprig T., Sitdhipol J., Tanasupawat S., 2014, Characterization of cellulose producing Bacillus and Paenibacillus strains from Thai soils, J. Appl. Pharm. Sci. 4, 6-11.
Google Scholar
Barlow P.W., 2003, The root cap: Cell dynamics, cell differentiation and cap function, J.Plant growth Regul. 21, 261-286.
Google Scholar
Bednarski W., Repsa A., 2001, Food biotechnology, wyd. WNT, Warszawa.
Google Scholar
Beguin P., Aubert J. P., 1994, The biological degradation of cellulose [Review], FEMS Microbiol. Rev. vol. 13, 25-58.
Google Scholar
Beukes N., Pletschke B. I., 2006, Effect of sulfur-containing compounds on Bacillus cellulosome-associated ‘CMCase’ and ‘Avicelase’ activities, FEMS Microbiol. Lett. 264, 226-231.
Google Scholar
Denisiuk W., 2008, Straw. The potential of mass and energy, Agr. Eng, vol. 100, 23-30. (in Polish).
Google Scholar
Dubos R. J., 1928, The decomposition of cellulose by aerobic bacteria, J. Bacteriol. vol. 15: 223-234.
Google Scholar
Emtiazi G., Pooyan M., Shamalnasab M., 2007, Cellulase activities in nitrogen fixing Paenibacillus isolated from soil in n-free media, World J. Agr. Sci., vol. 3, 602-608.
Google Scholar
Fogarty W. M., Griffin P. L., 1973, Some preliminary observations on the production and properties of a cellulolytic enzyme elaborated by Bacillus polymyxa, Biochem. Soci. Trans, vol. 1, 1297-1298.
Google Scholar
Ghose T. K., 1987, Measurement of cellulase activities, Pure Appl. Chem. vol. 59, 257-268.
Google Scholar
Górska, E., Tudek B., Russel S., 2001, Degradation of cellulose by nitrogen-fixing strain of Bacillus polymyxa, Pol. J. Microbiol. vol. 50, 129-137.
Google Scholar
Horn S. J., Vaaje-Kolstad G., Westereng B., Eijsink V. G. H., 2012, Novel enzymes for the degradation of cellulose, Biotechnol. Biofuels, vol. 5, 45-57.
Google Scholar
Khianngam S., Akaracharanya A., Tanasupawat S., Lee K. C., Lee J. S., 2009, Paenibacillus thailandensis sp. nov. and Paenibacillus nanensis sp. nov., xylanase-producing bacteria isolated from soil, Int. J. Syst. Evol. Micr. vol. 59, 564-568.
Google Scholar
Kumar D., Ashfaque M., Muthukumar M., Singh M., Garg N., 2012, Production and characterization of carboxymethyl celllulase from Paenibacillus polymyxa using mango peel as substrate, J. Eviron. Biol. vol. 33, 81-84.
Google Scholar
Liang Y. L., Zhang Z., Wu M., Wu Y., Feng J. X., 2014, Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of china and optimization of cellulase production by Paenibacillus terrae ME27-1, Biomed Res. Int., 1-13.
Google Scholar
Moon J. C., Jung X. J., Jung J. H., Jung H. S., Cheong Y. R., Jeon C. O., Lee K. O., Lee S. Y., 2011, Paenibacillus sacheonensis sp. nov., a xylanolytic and cellulolytic bacterium isolated from tidal flat sediment, Int. J. Syst. Evol. Micr. vol. 61, 2753-2757.
Google Scholar
Pason P., Kyu K. L, Ratanakhanokchai K., 2006, Paenibacillus curdlanolyticus strain B-6 xylanolyticcellulolytic enzyme system that degrades insoluble polysaccharides, Appl. Environ. Microbiol. vol. 72, 2483-2490.
Google Scholar
Rivas R., Mateos P. F., Martínez-Molina, E. Velázquez. 2005. Paenibacillus phyllosphaerae sp. nov., a xylanolytic bacterium isolated from the phyllosphere of Phoenix dactylifera, Int. J. Syst. Evol. Micr., vol. 55, 743-746.
Google Scholar
Sánchez M. M., Fritze D., Blanco A., Spröer C., Tindall B. J., Schumann P., Kroppenstedt R. M., Diaz P., Pastor F. I., 2005, Paenibacillus barcinonensis sp. nov., a xylanase-producing bacterium isolated from a rice field in the Ebro River delta., Int. J. Syst. Evol. Micr. vol. 55, 935-939.
Google Scholar
Sharma N., Mahajan S., Sharma N., 2013, Evaluation of different pretreatments versus forest wood waste and its selection as a solid substrate for enhanced cellulase production by Paenibacillus mucilaginous B5, Asian J. Ex.p Biol. Sci. vol. 4, 226-236.
Google Scholar
Subramaniyan S., Prema P., 1999, Cellulase-free xylanases from Bacillus and other microorganisms, FEMS Microbiol. Lett. vol. 183: 1-7.
Google Scholar
Święcicka I., Hauschild T., 1996, Genus of Bacillus – occurrence and role in natural environments, Post. Mikrobiol, vol. 35: 27-41. (in Polish).
Google Scholar
Ten L. N, Sang-Hun B., Wan-Taek I., Larina L. L., Jung-Sook L., Hee-Mock O., Sung-Taik L., 2007, Bacillus pocheonensis sp. nov., a moderately halotolerant, aerobic bacterium isolated from soil of a ginseng field, Int. J. Syst. Evol. Micr. vol. 57, 2532-2537.
Google Scholar
Waeonukul R., Kyu K. J., Sakka K., Ratanakhanokchai K., 2009, Isolation and characterization of a multienzyme complex (cellulosome) of the Paenibacillus curdlanolyticus B-6 grown on Avicel under aerobic conditions, J. Biosci. Bioeng, vol. 107, 610-614.
Google Scholar
Vardavakis E., 1989, Seasonal fluctuations of aerobic cellulolytic bacteria, and cellulase and respiratory activities in a soil profile under a forest, Plant Soil, vol. 115, 145-150.
Google Scholar
Velázquez E., de Miguel T., Poza M., Rivas R., Rosselló-Mora R., Villa T.G., 2004, Paenibacillus favisporus sp. nov., a xylanolytic bacterium isolated from cow faeces, Int. J. Syst. Evol. Micr. vol. 54, 59-64.
Google Scholar